基于缸内压力轨迹的柴油/天然气双燃料发动机燃烧评价新方法外文翻译资料

 2021-12-02 10:12

Zhongshu Wang a, Wenjing Chen a, Dan Wang a, *, Manzhi Tan a, Zhongchang Liu a, Huili Dou b

Article history:

Received 16 December 2015

Received in revised form

26 May 2016

Accepted 6 September 2016

Keywords:

Combustion evaluation

In-cylinder pressure trace

Dual fuel engine

Standard deviation

Coefficient of variation

Combustion variation

To better understand the combustion process of the dual fuel engines, a novel evaluation method based on the in-cylinder pressure traces was proposed in this study. Two evaluation parameters, the in-cylinder pressure standard deviation and the coefficient of variation, were calculated from the measured incylinder pressure traces at every crank angle. The profile of in-cylinder pressure standard deviation shows that there is an obvious jump representing the overall combustion process. The effect of diesel injection timing shows that, by advancing diesel injection timing, the start of jump shows an initial advancing and then retarding trend. The profiles of in-cylinder pressure standard deviation or coefficient of variation show the change of combustion process as the pilot diesel injection timing is advanced. When the pilot diesel injection timing is later than 30CA BTDC, there is a rapid rise and a higher main peak in the profiles of in-cylinder pressure standard deviation with the injection timing advancing. As the diesel injection timing is further advanced, the initial rapid rise shows an increasing trend while the main peak shows a weakening trend; and both of them finally overlap together when the diesel injection timing is earlier than 40CA BTDC.

copy; 2016 Elsevier Ltd. All rights reserved.

a State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China b China FAW Group Cooperation Ramp;D Center, Changchun 130011, China

a r t i c l e i n f o

a b s t r a c t

1. Introduction

To achieve ultra-clean and higher engine efficiency, many automobile companies, institutions, and universities have undertaken enormous research efforts to improve engine combustion process. Meanwhile, in order to better understand and optimize combustion process, many innovative techniques have emerged recently.

With a focus on the in-cylinder combustion process analysis, there may be two mainstream techniques, including the optical measurement and the in-cylinder pressure sampling techniques. Various laser-based measurement techniques have been developed during the past decades, and nowadays many of them have become well-accepted tools for combustion diagnostics. Typical combustion-related properties that can be successfully probed by the use of laser diagnostics are, for example, temperature, velocity, droplet size, evaporation characteristics, and species distribution/

* Corresponding author.

E-mail address: wangdanjlu414@163.com (D. Wang).

http://dx.doi.org/10.1016/j.energy.2016.09.030

0360-5442/copy; 2016 Elsevier Ltd. All rights reserved.

concentration [1]. The sampling and analysis of gases collected from the cylinder can give quantitative details on the formation of organic species during the combustion cycle. Results may contribute to validation of kinetic models and practical combustion analysis, performed with a stirred reaction or shock wave tube [2]. Using any technique mentioned above, a satisfactory research result can be obtained, but all of them require sophisticated and expensive equipment. Under this circumstance, a relatively convenient and practical technique, in-cylinder pressure diagram, is widely used [3e7]. It is well known that the measurement of the in-cylinder pressure has been an object of study from the beginning of the internal combustion engine. The importance of this signal lies on the amount of information that it can provide such as the peak pressure (which is a critical mechanical constraint), indicated mean effective pressure, and the pumping mean effective pressure. In addition, it can even allow some more complex calculations such as air mass flow estimation [8] or combustion diagnosis on the basis of the first law of thermodynamics [9,10]. Thus, in-cylinder pressure measurement is considered a very valuable source of information during the development and calibration stages of the engine [11]. On the other hand, in-cylinder pressure diagram can be easily measured using a pressure transducer. Recently, there are two major aspects regarding the research on in-cylinder pressure:

how to obtain accurate in-cylinder data, and how to better understand and evaluate the combustion process with these data.

In the engine combustion diagnosis, the heat release rate and the combustion reaction extent are the most useful quantities obtainable from the in-cylinder pressure data. The heat release rate is the instantaneous fuel chemical energy calculated by the pressure variations observed experimentally, while the combustion reaction extent is evaluated through the released fraction of the total fuel chemical energy [12]. Usually, the heat release rate is calculated using the first law of thermodynamics and some simplified assumptions. For the pilot diesel ignited natural gas dual fuel engines, the calculation of heat release rate faces more significant challenges due to the uncertainty of the initial heat release process by the dual fuel. Relevant research shows that the heat release in a dual-fuel engine is expected to be different from those in both the natural-gas engine and the diesel engine. The combustion heat release for the dual-fuel engine can be considered to consist of three distinct ph

基于缸内压力轨迹的柴油/天然气双燃料发动机燃烧评价新方法

Zhongshu Wang, Wenjing Chen, Dan Wang, Manzhi Tan, Zhongchang Liua, Huili Do

吉林大学汽车仿真与控制国家重点实验室,长春130025,中科集团合作研发中心,长春130011

摘要:为了更好地了解双燃料发动机的燃烧过程,本文提出了一种基于缸内压力轨迹的评价方法。根据测量到的每一个曲柄转角下的压力轨迹,计算出缸内压力标准差和变异系数两个评价参数。缸内压力标准偏差曲线表明,整个燃烧过程有明显的跃变。喷油正时的影响表明,随着喷油正时的提前,跳转的开始呈现初步提前,继而延迟的趋势。缸内压力标准差或变异系数的分布表明,随着先导式柴油喷射正时的提前,燃烧过程发生了变化。当先导柴油机喷油正时在上止点30°曲柄转角之前时,缸内压力标准偏差曲线随喷油正时的提前会快速上升并且会有更高的峰值。随着喷油正时的进一步提前,缸内压力标准偏差曲线最初的快速上升呈增长趋势,而峰值呈削弱趋势;柴油喷射正时在上止点40°曲柄转角之前时,二者则会重叠到一起。

关键词:燃烧评估 缸内压力轨迹 双燃料发动机 标准偏差 变异系数 燃烧变化

简介

为了实现超清洁和更高的发动机效率,许多汽车公司、机构和大学为改善发动机燃烧过程进行了大量的研究工作。同时,为了更好地理解和优化燃烧过程,最近出现了许多创新的技术。

以气缸内燃烧过程分析为重点,可能有两种主流技术,包括光学测量技术和缸内压力采样技术。在过去的几十年里,各种基于激光的测量技术得到了发展,其中许多技术已经成为公认的燃烧诊断工具。使用激光诊断可以成功探测的典型燃烧相关特性,并且用搅拌反应或冲击波管进行观察,例如,温度、速度、液滴尺寸、蒸发特性和物种分布模型和实际燃烧分析[2]。使用上述任何一种技术,都可以取得令人满意的研究成果,但它们都需要精密和昂贵的设备。在这种情况下,一种相对方便实用的技术,即缸内压力图,得到了广泛的应用[3-7]。众所周知,缸内压力的测量一直是内燃机研究的一个重要课题。这个信号的重要性在于它能提供的信息量,如峰值压力(这是一个临界的机械约束),指示平均有效压力和泵送平均有效压力。此外,它甚至可以允许一些更复杂的计算,例如基于热力学第一定律[9,10]的空气质量流量估算[8]或燃烧诊断。因此,缸内压力测量被认为是发动机开发和校准阶段的一个非常有价值的信息源[11]。另一方面,使用压力传感器可以很容易地测量缸内压力图。近年来,对缸内压力的研究主要有两个方面:如何获得准确的缸内数据,以及如何利用这些数据更好地理解和评价燃烧过程。

在发动机燃烧诊断中,从缸内压力数据看,热释放率和燃烧反应程度是最有用的量值。热释放率是通过实验观察到的压力变化计算出的瞬时燃料化,而燃烧反应程度通过总燃料化学能的释放分数来评价[12]。通常,利用热力学第一定律和一些简化的假设来计算热释放速率。对于先导柴油点燃天然气双燃料发动机,由于双燃料初始放热过程的不确定性,热释放速率的计算面临更大的挑战。相关研究表明,双燃料发动机的热释放与天然气发动机和柴油发动机不同。双燃料发动机的燃烧放热可以认为是由三个不同的阶段组成的。第一阶段涉及引燃油燃烧所释放的能量;第二阶段包括在引燃油附近燃烧天然气;第三阶段是由于整个混合物通过火焰传播而燃烧[13]。以往的研究表明,先导式柴油机喷射定时是柴油/天然气双燃料发动机燃烧过程的关键参数,决定了先导式柴油机的点火方式和质量。采用常规的先导柴油喷射定时,点火方式与传统的柴油机压缩点火模式相似,当柴油喷射正时超过由混合物温度决定的临界值时,可以实现两级自燃模式[14]。此外,通过化学发光成像对双燃料、反应性可控压燃(RCI)发动机燃烧过程的光学研究表明,在本研究中所研究的操作条件下,挤压区域中的混合物首先点燃,反应区向燃烧室的中心前进[15]。如前所述,以往的热释放率计算方法已不能满足双燃料发动机燃烧过程精确分析的要求。

结果表明,无论是柴油还是天然气,任何新的化学反应的干扰都必然会引起缸内压力的变化[16-21]。采用一种基于缸内压力轨迹的分析方法,可以提供更多关于双燃料发动机燃烧的新信息。为了更好地了解柴油/天然气双燃料发动机的燃烧过程,本文将探讨一种基于缸内压力轨迹的新的评价方法。

实验

实验步骤

本研究所用的试验发动机为8.6升、6缸、涡轮增压、中间冷却器、重型柴油/天然气双燃料发动机。详细技术规范见表1。

发动机实验装置的示意图如图1所示。压缩气体中的天然气在大约20兆帕的压力下被压缩,并通过在发动机注入进气口之前由发动机冷却水加热的调节器减压至0.8 MPa。在本研究中,利用共轨燃油喷射系统在压缩冲程期间将引燃油喷射到气缸内,并通过天然气喷射系统将压缩天然气(CNG)注入进气道。选用

图1.发动机试验台图

表1

试验发动机详细技术条件

缸径times;冲程

112times;145mm

气缸数

6

排量

8.6L

额定功率

260kW 2100r/min

压缩比

17.2:1

喷油嘴孔数

8

天然气作为主要燃料,用于中国吉林省。表2和3显示了本研究所用柴油和天然气的详细特性。

在测试过程中,通过260千瓦的涡流发动机测力计(CW260,CAMA洛阳,中国)手动测量发动机负载和速度。采用K型热电偶(plusmn;0.75%FS)测量了发动机油温、副温度、排气温度和进气温度。发动机油温度、冷却剂温度、排气温度和入口空气温度使用K型热电偶测量(精度plusmn;0.75% FS)。柴油机的流量用TSONIL CMFD015质量流量计(MFM)测量(精度为plusmn;0.1% FS)。压缩天然气的流量用质量流量计(MFM)测量(精度plusmn;0.35% FS)。空气流量由层流流量计测量,精度为plusmn;1%。对于每个测试点,用安装在气缸盖上的Kistel6125B压电换能器(精度为plusmn;0.4% FSO)测量气缸压力,安装在曲轴前部的Kistel2613B曲柄角编码器(精度为1CA)和5011B的电荷放大器,在一个曲柄角的间隔下取样200次以上。通过测量发动机压力图确定上止点(TDC)。

表2

试验燃料特性

燃料

柴油

天然气

沸点(℃)

180-360

-162

低热值(MJ/Kg)

43

50.0

十六烷值

52.5

-

辛烷值

-

130

蒸发热(KJ/kg)

250

-

自燃温度(℃)

250

650

空燃比(Kg/Kg)

14.3

16.4

表3

天然气成分

成分

体积百分数

甲烷

88.70

乙烷

5.45

丙烷

2.32

丁烷

1.82

1.08

二氧化碳

0.63

实验条件

为了更好地了解双燃料发动机的燃烧过程,提出了一种基于缸内压力轨迹的评价方法。从实测的缸内压力轨迹计算出了两个评价参数,即缸内压力标准偏差和变异系数。

众所周知,在高速轻负荷工况下,柴油/天然气双燃料发动机的燃烧变化更为严重[13,22]。因此,本研究只研究了一种典型的工况,并利用该评价方法研究了引燃油喷油正时的影响。在试验过程中,柴油和天然气的质量流量保持不变,柴油喷射压力设定在70 MPa的恒定值。同时,在将喷油正时设定为压缩冲程上止点315°曲柄转角之前的情况下,将天然气喷射压力设定为0.8 MPa的恒定值。双燃料模式的总燃料能量是当发动机在1977 r/min、25%负载(64.8kW)和35°CA BTDC的先导柴油喷射定时输出相等功率时确定的。结果表明,引燃柴油和天然气的质量流量分别为100 kg/h和10 kg/h,能量比为12:88。在这篇论文中,能量是由燃料低热值计算的,如表2所示。将来则会对发动机转速、负荷和柴油机喷油压力的影响进行进一步的研究。选择8个先导柴油喷射定时进行研究,发动机运行参数列于表4中。

表4

发动机运行参数

喷油提前角

转速

r/min

功率

kW

柴油

Kg/h

天然气

Kg/h

空气

Kg/h

进气歧管压力(bar)

10

1976

19.0

2.20

16.28

723

1.54

15

1976

30.0

2.19

16.29

754

1.59

20

1977

43.1

2.20

16.32

794

1.68

25

1977

54.7

2.19

16.32

831

1.73

30

1975

62.0

2.19

16.28

853

1.77

35

1977

64.8

2.19

16.31

856

1.79

40

1977

63.1

2.20

16.31

850

1.76

45

1976

51.1

2.20

16.30

815

1.69

结果与讨论

数据分析与评价方法

如上所述,缸内压力轨迹的变化可以显示双燃料发动机燃烧过程的重要信息。为了评价缸内压力轨迹的分散性,对气缸内压力进行了连续200多次采样,间隔为1°曲轴角。在图2中示出了在35°喷油提前角时的测试结果。结

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。