相位调制信号的波长变换技术研究外文翻译资料

 2022-11-11 11:11

英语原文共 8 页,剩余内容已隐藏,支付完成后下载完整资料


仿全光四波混频

波长转换

Yongkang Gong,1, 2,* Jungang Huang,1 Kang Li,1, 2 Nigel Copner,1 J. J. Martinez,1 Leirang Wang,2 Tao Duan,2 Wenfu Zhang,2 and W. H. Loh3

1英国格拉摩根大学高级技术大学,CF371DL

2西安光学精密机械研究所瞬态光学与光子学国家重点实验室

中国西安科学院710119

3南安普敦大学光电子研究中心,SO171BJ,英国

*ygong@glam.ac.uk

摘要: 我们首次提出了一种全光波长转换(全光波长变换)方案支持调制格式独立,无需相位匹配。 新的方案被称为仿四波混频(SFWM),并且与公知的FWM理论(其中感生动态折射率光栅调制光子以产生新频率的波)相比,SFWM的不同之处在于动态折射率光栅在非线性布拉格光栅中产生以激发原始布拉格光栅带的任一侧的附加反射峰 反射光谱中的带隙。 这种基本差异使得SFWM避免了传统FWM所要求的严格相位匹配的固有缺点,并且允许具有调制格式透明性和超宽转换范围的全光波长变换,这在下一代全光网络中具有潜在的应用前景。

sect;2012年美国光学学会

OCIS关键词: (060.1155)全光网络;(230.1150)全光器件;(050.5298)

光子晶体。

参考资料和链接

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.

14(6), 955–966 (1996).

  1. S. Subramaniam, M. Azizoglu, and A. K. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw. 4(4), 544–557 (1996).
  2. H. Ishikawa, “Ultrafast all-optical signal processing devices,” chapter 6, ISBN 978–0470518205, Wiley (2008).
  3. A. Tzanakaki, M. P. Anastasopoulos, K. Georgakilas, and D. Simeonidou, “Energy aware planning of multiple virtual infrastructuresover converged optical network and IT physical resources,” in Proceedings of ECOCrsquo;2011, Switzerland, (2011).
  4. A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. Van Daele, D. Simeonidou, M. J. Orsquo;Mahony, S. Aleksić, L. Wosinska, and P. Monti, “Dimensioning the future pan-European optical network with energy efficiency considerations,” J. Opt. Commun. Netw. 3(4), 272–280 (2011).
  5. G. S. Zervas, V. Martini, Y. Qin, E. Escalona, R. Nejabati, D. Simeonidou, F. Baroncelli, B. Martini, K. Torkmen, and P. Castoldi, “Service-oriented multigranular optical network architecture for clouds,” J. Opt. Commun. Netw. 2(10), 883–891 (2010).
  6. N. Amaya, G. S. Zervas, B. R. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold all-optical bandwidth granularity,” Opt. Express 19(26), B235– B241 (2011).
  7. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011).
  8. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1- m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
  9. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Fouml;rst, “Ultrafast Kerr-induced all- optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
  10. J. B. Driscoll, W. B. Astar, X. B. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
  11. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
  12. G. W. Lu, K. K. Abedin, and T. Miyazaki, “All-optical RZ-DPSK WDM to RZ-DQPSK phase multiplexing using four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 19(21), 1699–1701 (2007).
  13. T. Andersen, K. Hilligsoslash;e, C. Nielsen, J. Thoslash;gersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004).
  14. H. Ahmad, N. A. Awang, A. A. Latif, M. Z. Zulkifli, Z. A. Ghani, and S. W. Harun, “Wavelength conversion based on four-wave mixing in a highly nonlinear fiber in ring configuration,” Laser Phys. Lett. 8(10), 742–746 (2011).
  15. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
  16. R. K. W. Lau, M. Meacute;nard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
  17. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
  18. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
  19. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
  20. S. Singh, “Boost up of four wave mixi

    剩余内容已隐藏,支付完成后下载完整资料


    资料编号:[18938],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。