水堆冷却塔冷却剂智能流量控制系统外文翻译资料

 2022-08-15 02:08

外文原文

An intelligent flow control system of coolant for a water reactor based cooling tower

a b s t r a c t

A cooling tower used in power plant or reactor is a heat rejection device, which extracts waste heat to the atmosphere though the cooling of a water stream to a lower temperature. Heat is generated in the primary loop and transferred to the secondary loop of a water reactor. Hence, fluid temperature in the secondary loop becomes very high which uses cooling tower to be cooled down. Therefore, an automated control system is necessary to develop for controlling this process since the operation of this stage is very sensitive and human interference is very risky. In this study a prototype of intelligent flow control system based on Fuzzy Logic Control (FLC) is developed which gives the possible solution for this problem. The system works based on the temperature difference of inlet and outlet and flow of the coolant. The inlet temperature is set to 37.8 °C while the outlet temperature is set to 25.4 °C with 5.08times;10-4 m3/hr coolant flow rate at Normal Operation (NO). It is observed that the system works with its maximum efficiency in NO if the valve is opened at 75%. If the temperature difference deviates from NO then the corresponding coolant flow rate also varies automatically based on these parameters.

  1. Introduction

Water reactor is a nuclear reactor where water is used as both moderator and coolant. There are two types of water reactor: boiling water reactor (BWR) and pressurized water reactor (PWR). Massive amount of heat is generated in both BWR and PWR which later on transfer in coolant. Therefore a cooling tower is an inseparable component for water reactor to cool down the coolant. A cooling tower is a heat rejection device, which extracts waste heat to the atmosphere though the cooling of a water stream to a lower temperature. The type of heat rejection in a cooling tower is termed 'evaporative' in that it allows a small portion of the water being cooled to evaporate into a moving air stream to provide significant cooling to the rest of that water stream. The heat from the water is transferred to the air. As a result temperature of the air and its relative humidity rise and this air is discharged to the atmosphere. It is commonly used to provide significantly lower water temperatures than achievable with 'air cooled' or 'dry' heat rejection devices, which is made for power plant. Its purpose is to achieve more cost-effective and energy efficient operation of systems in need of cooling. Common applications for cooling towers are providing cooled water for air-conditioning, manufacturing and electric power generation. The smallest cooling towers are designed to handle water streams of only a few gallons of water per minute supplied in small pipes like those might see in a residence, while in the largest cooling towers, hundreds of thousands of gallons per minute is supplied in pipes. The generic term 'cooling tower' is used to describe both direct (open circuit) and indirect (closed circuit) heat rejection equipment. While most think of a 'cooling tower' as an open direct contact heat rejection device, the indirect cooling tower, sometimes referred to as a 'closed circuit cooling tower' is nonetheless also a cooling tower. In a counter-flow cooling tower air travels upward through the fill or tube bundles, opposite to the downward motion of the water. In a cross-flow cooling tower air moves horizontally through the fill as the water moves downward. Cooling towers are also characterized by the means by which air is moved. Mechanical-draft cooling towers rely on power-driven fans to draw or force the air through the tower. Natural-draft cooling towers use the buoyancy of the exhaust air rising in a tall chimney to provide the draft [1]. A fan-assisted natural-draft cooling tower employs mechanical draft to augment the buoyancy effect. Many early cooling towers relied only on prevailing wind to generate the draft of air. In order to increase the heat transfer rate in cooling tower numerous experimental method has been applied. Using solid particle free liquid in micro level is one of them. But the most advance way to increase heat transfer rate in cooling tower is using nano fluid [2]. nano fluids are the new class of nanotechnology-based heat transfer fluids, obtained by dispersing and stably suspending nanoparticles with typical dimensions on the order of 10 nm. The size of cooling tower can be reduced by using nano fluid which has higher heat transfer capacity [3]. As cooling tower is the most effective solution to transfer heat from any industrial facility as well as power plant; the process should be automated with proper diversity and redundancy to ensure maximum safety [4]. Hence it is very much needed to control the fluid flow based on the temperature, flow rate and flow velocity of fluid [5]. Different methods can be applied (e.g. PLC, PDE etc.) to analyze such control system. However fuzzy logic is one of the most efficient and time relevant method for this purpose as it has the ability to analyze heat transfer and control system at the same time [6]. It has been shown from different study that fuzzy logic control system is being used in nuclear industry and nuclear reactor from time to time [7-9]. Therefore in this study with the help of Fuzzy logic control (FLC) an advanced automated flow control system for a water reactor based draft cooling tower has been introduced.

  1. Methodology

2.1. Analysis

As the block diagram shown in Fig. 1, the water in the reservoir is heated by the energy provided by heat source. Then the water passes through flow control valve of hot leg and reach to pump. Then the water goes to the cooling tower. A thermocouple and a flow meter is placed between the cooling

剩余内容已隐藏,支付完成后下载完整资料


水堆冷却塔冷却剂智能流量控制系统

摘要

发电厂或反应堆中使用的冷却塔是一种散热装置,它通过将水流冷却到较低的温度,将废热排向大气中。热量是在一次回路中产生的,并传递到水反应器的二次回路。因此,二次回路中的流体温度变得很高,使用冷却塔进行冷却。因此,为了控制这一过程,需要开发一个自动控制系统,因为这一阶段的操作非常敏感,而且人为干扰非常危险。本研究开发了一种基于模糊逻辑控制的智能流量控制系统原型,给出了该问题的可能解决方案。该系统根据冷却剂进出口温差和流量进行工作。 正常运行时(NO),入口温度设定为37.8°C,出口温度设定为25.4°C,冷却剂流量5.08times;10 -4 m3 /hr。观察到,如果阀门以75%的速度打开,系统的最大效率为NO。 如果温差偏离NO,则相应的冷却剂流量也会根据这些参数自动变化。

1 导言

水反应堆是一种核反应堆,水既作为调节剂,又作为冷却剂。 有两种类型的水反应堆:沸水反应堆(B WR)和加压水反应堆(PWR)。 大量的热量是在沸水反应堆和加压水反应堆中产生的,随后在冷却剂中转移。 因此,冷却塔是水反应堆冷却冷却剂的不可分割的组成部分。 冷却塔是一种散热装置,它通过将水流冷却到较低的温度,将废热抽取到大气中。 冷却塔中的散热类型被称为“蒸发”,因为它允许被冷却的水的一小部分蒸发到移动的气流中,从而为该气流的其余部分提供显著的冷却。 水中的热量被转移到空气中。 因此,空气的温度及其相对湿度上升,这种空气被排放到大气中。 它通常用于提供明显低于可实现的水温的“空气冷却”或“干燥”散热装置,这是为发电厂制造的。 其目的是实现需要冷却的系统更具成本效益和节能的运行。 冷却塔的常见应用是为空调、制造和发电提供冷却水。 最小的冷却塔的设计是用来处理每分钟只有几加仑水的水流,这些水流通过小管道供应,就像住宅中可能看到的那样,而在最大的冷却塔中,每分钟几十万加仑的水是用管道供应的。 “冷却塔”是用来描述直接(开路)和间接(闭路)散热设备的通用术语。 虽然大多数人认为“冷却塔”是一种开放式直接接触散热装置,但是间接冷却塔(有时被称为“闭路冷却塔”)仍然是一种冷却塔。 在逆流冷却塔中,空气通过填充或管束向上传播,与水的向下运动相反。 在横流冷却塔中,当水向下移动时,空气水平地通过填料。 冷却塔的特点还包括空气流动方式。 机械通风式冷却塔依靠电力驱动的风扇来吸引或迫使空气通过冷却塔。 自然通风冷却塔利用高烟囱中排出的空气的浮力来提供通风[1]。风扇辅助自然通风冷却塔采用机械通风来增强浮力效应。 许多早期的冷却塔只依靠盛行风来产生气流。 为了提高冷却塔的传热率,采用了许多实验方法。 在微观层面上使用固体无颗粒液体是其中之一。 但提高冷却塔传热速率的最先进方法是使用纳米流体[2]。 纳米流体是一类新型的基于纳米技术的传热流体,是通过分散和稳定悬浮纳米颗粒而获得的,其典型尺寸约为10nm。采用具有较高传热能力的纳米流体可以减小冷却塔的尺寸[3]。由于冷却塔是从任何工业设施以及发电厂传递热量的最有效的解决方案;该过程应采用适当的多样性和冗余进行自动化,以确保最大的安全性【4】。因此,非常需要根据流体的温度、流速和流速来控制流体的流动[5]。可采用不同的方法(如PLC、PDE等)对该控制系统进行分析。然而,模糊逻辑是一种最有效且与时间相关的方法,因为它能够同时分析传热和控制系统[6]。不同的研究表明,模糊逻辑控制系统在核工业和核反应堆中的应用时有发生[7-9]。因此,本研究以模糊逻辑控制(FLC)为工具,介绍一种先进的水堆式通风冷却塔自动流量控制系统。

2.方法学

2.1分析

如图所示的框图1。水库中的水由热源提供的能量加热。 然后水通过热段流量控制阀,到达泵。然后水去冷却塔,在冷却塔和泵之间放置热电偶和流量计,从冷却塔起,冷水通过另一台泵和冷段流量控制阀回到水库。在冷却塔和泵之间放置热电偶。冷段泵与流量控制阀之间放置一个紧急换热器和一个热电偶,三个信号来自三个热电偶,一个信号来自流量计。因此,可以清楚地看到,控制系统基本上在这4个读数下工作,从4个输入。有三个输出信号,其中两个信号转到两个流量控制阀,其中一个信号转到紧急热交换器。如果输入信号与控制系统的设定值不匹配,则控制系统可以在适当的安全条件下自动修改其输出信号以保持最大流量。在作者[8]先前发表的结果上,正常入口温度设置为38°C,正常出口温度设置为36°C以下。流量计设置为5.14X10E-4.. 在任何输入偏离这些读数的情况下,流量控制阀提高流体供应或根据需要减少它。在极端或变化的异常流量的情况下,系统自动关闭冷却塔。

图 1. 控制程序框图

2.2智能控制系统的开发

采用在基于esp8266的服务器和FLC分析的帮助下,在核科学与工程实验室建立了一个基于Arduino的控制器系统来控制冷却塔的流量, 这里正在研究三个参数。 它们是流体入口温度、流体出口温度和流体流动。 在图中 该实验系统由三个热电偶、两个Arduino板、两个显示电池的适当多样性和冗余、两个现场电池充电适配器、一个用于创建服务器的esp8266、一个3v电源为esp8266供电、一个3v备用电源、一个cubie板连接服务器、一个RTC来计算第二个时间、两个用于进出口流体温度的指示器和两个用于正确开关的MOSFET组成。

1

4

2

8

6

7

9

11

5

3

10

12

符号:(1)微控制器,(2)热偶1,(3)热偶2,(4)指示器,(5)显示器,(6)MOSFET,

  1. 电池,(8)ESP8266电源,(9)电池充电器,(10)RTC,(11)主控板,(12)ESP8266

图 2:开发的实验系统相关参数

输入变量

产出变量

入口温度(x°C)

出口温度

(y°C)

流体流动(z m3 /hr)x10-4

运行状态

指示符

流量阀开启(热段)

流量阀开启(冷段)

27lt;xlt;=38

25lt;ylt;=36

5lt;zlt;5.14

正常

Green

60-90%

60-90%

27lt;xlt;=38

45gt;ygt;36

5lt;zlt;5.14

故障-急热,

交换器开启

黄色

40-60%

40-60%

60gt;xgt;38

45gt;ygt;36

5lt;zlt;5.14

容量不足-

紧急状态开启热交换器

黄色

10-30%

10-30%

60gt;xgt;38

60gt;ygt;45

5lt;zlt;5.14

容量不足/系统跳闸

红色和警报上升

Off

Off

27lt;xlt;=38

25lt;ylt;=36

4.5lt;zlt;5

管破裂

黄色

30-40%

30-40%

27lt;xlt;=38

45gt;ygt;36

4.5lt;zlt;5

管破裂塔-失灵

紧急热交换器开启

1-10%

1-10%

60gt;xgt;38

60gt;ygt;40

4.5lt;zlt;5

容量不足—管破裂

红色和警报上升

Off

Off

表1:流量阀相关参数运行状态

  1. 模糊专家系统的实现

表1显示了冷却塔的不同运行状态,包括冷却剂的正常和异常流量。在这些数据的基础上,进行了模糊逻辑分析,建立了一个自动流量控制系统。

3.1功能发展

在本研究中,模糊化考虑了三个输入,即“流体流量(FOF)”、“出口温度(OT)”和“入口温度(IT)”,以及两个输出,即“输出1”和“输出2”。对于FOF的输入,取两个语言变量,即“Fluid Flow 1(FF1)”和“Fluid Flow 2(FF2)”。OT输入采用“出口1(TO1)”、“出口2(TO2)”和“出口3(TO3)”三个语言变量。输入时,取“温度入口1(TI1)”和“温度入口2(TI2)”两个语言变量。本分析考虑了两个输出,即“输出1”和“输出2”。输出1取“热段1流量阀开度(FH1)”、“热段2流量阀开度(FH2)”、“热段3流量阀开度(FH3)”、“热段4流量阀开度(FH4)”和“热段5流量阀开度(FH5)”。输出2还取“冷段1流量阀开度(FVOC1)”、“冷段2流量阀开度(FVOC2)”、“冷段3流量阀开度(FVOC3)”、“冷段4流量阀开度(FVOC4)”和“冷段5流量阀开度(FVOC5)”。输入和输出的样本隶属度函数如图3所示。在这项研究中,三角形隶属度函数被用于输入和输出变量,因为它们使用广泛且精度很高[9]。输入和输出变量的单位为:FOF(m3/hr)、OT(摄氏度)、IT(摄氏度)、output1(百分比)和output2(百分比)。本研究共制定了8条规则。其中一些如表2所示。

  1. (b)

(c)

图 3. (a)流体出口温度的隶属度函数;(b)流体进口温度的隶属度函数;

(c)流量阀开度的隶属度函数(热段)

规则

输入变量

产出变量 剩余内容已隐藏,支付完成后下载完整资料


资料编号:[424027],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。