飞秒激光辐照聚甲基丙烯酸甲酯(PMMA)表面疏水性的研究外文翻译资料

 2022-08-17 04:08

Investigation on regulation of hydrophobicity of polymethyl methacrylate (PMMA) surface by femtosecond laser irradiation

Abstract: This study presents the contact angle prediction model of trapezoidal groove structure based on laser irradiation on polymethyl methacrylate (PMMA). The trapezoidal groove structure was designed and proposed according to the characteristics of femtosecond laser. First, the complete wetting model and incomplete wetting model which were compatible with the characteristics of laser mechanism were constructed based on the Gibbs free energy and the structural parameters of the trapezoidal groove structure. Then, based on the contact angle prediction models constructed, the samples were divided into two groups according to the designed structural parameters, and the experimental investigations were carried out. The result demonstrated that the incomplete wetting prediction model was more in line with the actual situation. The convex width and the top edge length of spacing of the trapezoidal groove structure both affected the contact angle prediction results. From both the experimental contact angles and the contact angles predicted by the incomplete wetting model, it could be known that the contact angle reached 138.09° when the ratio of the convex width to the top edge length of spacing was 0.25, indicating that the smaller the ratio of the convex width to the top edge length of spacing, the better the hydrophobicity of PMMA.

Keywords: Femtosecond laser; Polymethyl methacrylate; Hydrophobicity; Trapezoidal groove structure

1. Introduction

Biomimetic interfaces such as water strider leg and the lotus leaf have been widely concerned for self-cleaning, dustproof and anticorrosive properties [1]. Such the self-cleaning surface is called hydrophobic surface in research community. A hydrophobic surface refers to a surface that can hardly be moistened by droplets, and its contact angle with water is not less than 90° [2-3]. At present, researchers have made continuous efforts in exploring the preparation of hydrophobic surface [4]. There are mainly two approaches to construct hydrophobic structures, one is making the surface of the material have low surface energy and the other is machining micro-nanoscale topologies on the surface of material [5-6].

Many methods have been proposed for preparing hydrophobic structures. Razavi et al [7]. used chemical vapor deposition to make microstructures on the surface of copper. Although various chemical methods have been widely used in the construction of hydrophobic structures, the properties of the micro-nano structures constructed by chemical methods are random and the arrangement of the structures cannot be controlled manually, which greatly influences the prediction of the hydrophobicity of materials. Shi et al [8]. used micro-milling to fabricate the microstructure on PMMA and Ti6Al4V. The properties of the as-fabricated microstructures are usually affected by the machine tool, and resulting in the uncontrollable size of the structure [9-10]. Wang et al. [10] used ion etching to fabricate T-shaped micro array structures with different densities and sizes on the surface of silicon wafers. Chen et al. [11] developed a rapid one-step electrodepositing process to fabricate superhydrophobic cathodic surface on copper plate in the electrolytic solution containing nickel chloride, myristic acid and ethanol. However, the applications of these methods are limited due to their high cost, complicated process and large time consumption [12]. At present, the above processing methods of superhydrophobic structures have been widely used, but they are not so effective in predicting the contact angle accurately and exploring the rule of the contact angle.

With the development of micro/nano-fabrication technology, laser processing technology has been gradually applied to the processing of micro-nano structure. Chichkov et al. [13] drilled the surface of the steel with femtosecond laser, picosecond laser and nanosecond laser, respectively. It can be found that the core mechanism of material removal under long-pulse laser irradiation is thermal deposition, resulting in melts on the edge of the structure after processing. Zorba et al. [14] used femtosecond laser to tailor the wetting response of silicon surfaces. Zhu et al. [15] used laser to process composite materials and found that long pulse laser processing led to significant heat affected zone, and the heat accumulation would occur, causing the over-burning if the actuation duration between laser and material was too long. However, the femtosecond laser can directly convert the substance from solid state to gaseous state at the stage where heat conduction has not yet occurred to remove the surface material due to the extremely short pulse time [16]. After laser irradiation, the material will rapidly cool down while the surface state changes, which has the least thermal impact on the processing point [17]. The processing mechanism of polymers is based on the breaking of chemical bond energy. Polymer chemical bonds will be broken after absorbing enough photon energy, and then the microstructure will be formed. The femtosecond laser has ultra-high peak power and ultra-short reaction time, which not only will realize high removal rate of polymer materials, but also ensure the smoothing of the prepared micro-nano structure. Besides, the femtosecond laser can be used to process flexible, repeatable, precise, and controllable microstructure on the surface of a variety of materials including polymers [18-21].

Wenzel model [22] and Cassie-Baxter model [23] were proposed to predict the contact an

剩余内容已隐藏,支付完成后下载完整资料


飞秒激光辐照聚甲基丙烯酸甲酯(PMMA)表面疏水性的研究

摘要 本文提出了基于激光辐照聚甲基丙烯酸甲酯(PMMA)的梯形槽结构接触角预测模型。针对飞秒激光的特点,设计并提出梯形槽结构。首先,基于吉布斯自由能和梯形槽结构的结构参数,构建了与激光机构特性相容的完全润湿模型和不完全润湿模型。然后,在建立的接触角预测模型的基础上,根据设计的结构参数将样品分为两组,并进行了实验研究。结果表明,不完全润湿预测模型更符合实际情况。梯形槽结构的凸宽和顶边间距长度均影响接触角预测结果。从实验接触角和不完全润湿模型预测的接触角可以知道,当间距的凸宽与顶边长度之比为0.25时,接触角达到138.09°,表明凸宽与顶边长度之比越小,PMMA的疏水性越好。

关键词 飞秒激光;聚甲基丙烯酸甲酯;疏水性;梯形槽结构

1 介绍

水杆腿、荷叶等仿生界面在自清洁、防尘、防腐等性能[1]上得到了广泛的关注。这种自清洁表面在研究界被称为疏水表面。疏水表面是指几乎不能被液滴润湿的表面,其与水的接触角不小于90°[2-3]。目前,研究人员在探索疏水表面[4]的制备方面做出了不断的努力。构建疏水结构的方法主要有两种,一种是使材料表面具有低的表面能;另一种是在材料表面加工微纳米拓扑[5-6]。

提出了许多制备疏水结构的方法。Razavi等人[7]用化学气相沉积法在铜表面形成微结构。虽然各种化学方法在疏水结构的构建中得到了广泛的应用,但化学方法构建的微纳结构的性质是随机的,结构的排列不能手动控制,这极大地影响了材料疏水性的预测。施等[8]采用微铣削法在PMMA和Ti6Al4V上制备了显微组织。加工微结构的性能通常受到机床的影响,导致结构尺寸不可控[9-10]。 Wang等人[10]利用离子刻蚀在硅片表面制备了不同密度和尺寸的T形微阵列结构。Chen等人[11]开发了一种快速的一步电沉积工艺,在含氯化镍、肉豆蔻酸和乙醇的电解液中在铜板上制备超疏水阴极表面。然而,由于成本高、工艺复杂、时间消耗[12]大,这些方法的应用受到限制。目前,上述超疏水结构的处理方法已经得到了广泛的应用,但它们在准确预测接触角和探索接触角的规律方面并不是那么有效。

随着微纳制造技术的发展,激光加工技术逐渐应用于微纳结构的加工。Chichkov等人 [13]分别用飞秒激光、皮秒激光和纳秒激光对钢表面进行了钻孔。可以发现,长脉冲激光照射下材料去除的核心机制是热沉积,加工后在结构边缘产生熔体。Zorba等人[14]使用飞秒激光裁剪硅表面的润湿响应。朱等人[15]利用激光对复合材料进行加工,发现长脉冲激光加工会导致显著的热影响区,并会发生热积累,如果激光与材料之间的驱动持续时间过长,则会燃。然而,由于脉冲时间[16]极短,飞秒激光可以在尚未发生热传导的阶段直接将物质从固态转化为气态来去除表面物质。激光照射后,材料在表面状态发生变化时会迅速冷却,对加工点[17]的热影响最小。聚合物的加工机理是基于化学键能的断裂。聚合物化学键在吸收足够的光子能量后会断裂,然后形成微观结构。飞秒激光具有超高的峰值功率和超短的反应时间,不仅可以实现高分子材料的高去除率,而且可以保证制备的微纳结构的平滑。此外,飞秒激光还可用于加工包括聚合物在内的各种材料表面的柔性、可重复、精确和可控的微观结构[18-21]。

提出了Wenzel模型[22]和Cassie-Baxter模型[23]来预测所有微纳结构的接触角。Marmur等人[24]建立了圆柱、半球、抛物面和截锥四个数学模型。然而,这些结构还没有与加工方法有关的研究。Song等人[25]在对能量模型进行修正的基础上,建立了接触角模型。在模型中还需要考虑微观结构的结构参数。此外,还需要构建结构特异性预测模型,以确保准确的接触角预测。

本文根据飞秒激光的特点和两种接触角预测模型(即两种接触角预测模型),设计了梯形槽结构。基于吉布斯自由能,建立了完全润湿预测模型和不完全润湿模型。对两种构造的预测模型进行了数值分析,探讨了梯形槽结构参数对其表面疏水性的影响。在分析的基础上,设计了两组结构参数并进行了相应的实验,验证了所构建的预测模型的合理性,并探索了导致最佳表面疏水性的结构参数。

2 基于飞秒激光的理论接触角预测模型的构建

2.1 模型的参数

飞秒激光作为一种典型的超短脉冲激光,具有高斯型空间分布[26-27]。图1是聚焦透镜作用下高斯分布的激光束的示意图,其中D是入射激光的光束直径,f是聚焦物镜的聚焦长度,Phi;是光斑直径。

图1激光束示意图。

考虑到激光加工的特点,在聚甲基丙烯酸甲酯(PMMA)表面设计梯形槽结构,研究PMMA的疏水性。图2为本文设计的梯形槽结构示意图。

图2梯形槽结构。

在图2中,a表示梯形槽结构的宽度,b和c分别是梯形槽结构的顶部边缘长度和下边缘间距长度。h是凸的深度。Ulsquo;表示梯形槽的斜边与垂直线之间的角度,以及激光束[28]中激光光斑与水平线之间的角度。本文可以根据光学系统的特点来定义U。聚焦目标透镜的NA为0.65,有:。 因此,Ulsquo;=40.54°。因此,本文设计的梯形槽结构可以很好地满足飞秒激光的特点,所构建的模型可以更实用。

虽然已经构建了许多预测模型来研究各种材料的疏水性,但考虑加工方法对接触角预测的影响的构建模型很少。根据材料的实际润湿状态,建立了完整的润湿模型和不完全润湿模型,如图3所示。固液接触线与气液接触线的夹角定义为接触角theta;CW 当液滴完全润湿材料表面时,如图3(A)所示。在不完全润湿模型的情况下,固液接触线与气液接触线的夹角定义为theta;IW如图3(B)所示。此外,润湿模型中的r表示液滴与固体接触表面的半径,R表示球体液滴的半径。

图3梯形槽结构的润湿模型:(A)完全润湿模型和(B)不完全润湿模型。

根据图1和图2中梯形槽结构的参数,梯形槽结构间距的下边缘长度可以表示如下:

(1)

当液滴放置在材料表面时,它们处于平衡状态。液滴下梯形槽结构的表面积为S:

(2)

很明显,当液滴放置在PMMA表面时,液滴的体积保持不变,液滴最终将处于平衡状态。因此,有一个方程表示液滴的表面自由能如下所示。

(3)

(4)

哪里gamma;sl,gamma;gl andgamma;sg 分别是固液、气液和固气界面的界面自由能。 Aslagl 和Asg 是这三个阶段的接触区域。基于表面张力,Young提出了计算液滴放置在理想光滑表面时接触角的方程。

(5)

表面张力值与表面自由能值相同,有:

(6)

2.2 建立完整的润湿预测模型

根据图3(A)和图2中的参数,在完全润湿预测模型下,固液和液气相的接触面积可以用以下方式表示:

(7)

(8)

由于固相-气相接触面积不能直接表示,所以梯形槽结构A的表面积s 引入来表示接口区域。

(9)

通过将上述接触区域代入方程(4),有:

(10)

然后,本征接触角theta;与完全润湿接触角theta;的关系CW 可以用方程(11)表示)。

(11)

根据方程(11),当梯形槽结构的深度不变时,在完全润湿预测模型下,凸板的宽度、间距和接触角的三维图如图4所示。

从图4可以看出,当梯形槽结构的宽度较大或梯形槽结构间距的顶部边缘长度较大时,预测的接触角将逐渐增大。特别是,当间距宽度和顶边长度同时较大时,接触角可以达到最大值。

图4.完全润湿预测模型下接触角和结构参数的三维曲线。

2.3 不完全润湿预测模型的建立

当用不完全润湿模型模拟梯形槽结构上的液滴时,如图3(B)所示,这三个相的接触面积是不同的。

基于图2中的参数,可以得到不完全润湿预测模型下固-液相接触面积。

(12)

在不完全润湿预测模型中,气相与液相的接触面积与完全润湿预测模型下的接触面积有很大的不同。此时,梯形槽结构的部分放大视图如图5所示。

图5.气液界面接触线示意图。

当液滴与微观结构接触时,液滴的表面曲率会使气体与液体之间的实际接触线变得弯曲。角度theta;y 两相之间是材料的本征接触角。本文采用数据物理OCA光学接触角测量仪测量PMMA的本征接触角为64°,有:

(13)

则,液气相接触面积可得:

(14)

此外,在不完全润湿预测模型下,固相-气相接触面积可以用与完全润湿预测模型下相同的方式表示。

(15)

结合方程(4)和(5),有:

(16)

然后,可以得到不完全润湿预测模型下凸板宽度,间距,接触角的三维曲线,如图6所示。

图6不完全润湿预测模型下接触角和结构参数的三维曲线。

如图6所示,当梯形槽结构的宽度较小时,同时间距的顶部边缘长度较大时,接触角将最大。对于单因素变量,可以看出梯形槽结构宽度越小,预测接触角越大。值得注意的是,当间距的顶部边缘长度逐渐增加时,预测接触角将采取更大的值。

3 实验和验证

3.1 实验设备及加工参数

本实验采用折纸-10XP飞秒激光进行。飞秒激光处理系统如图7所示。

图7.飞秒激光加工系统。

本处理系统中激光器输出功率为4W,脉冲宽度为400fs,波长为1030nm。 剩余内容已隐藏,支付完成后下载完整资料


资料编号:[408635],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。