M2M通信系统外文翻译资料

 2022-05-20 10:05

Workshop on Device to Device communications for 5G NETWORKS (WD5G 2016)

NB-IoT System for M2M Communication

Rapeepat Ratasuk, Benny Vejlgaard, Nitin Mangalvedhe, and Amitava Ghosh

Mobile Radio Research Lab, Nokia Bell Labs

Email: {rapeepat.ratasuk, benny.vejlgaard, nitin.mangalvedhe, amitava.ghosh}@nokia.com

Abstract — In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes – (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard- band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low- cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.

Keywords—NB-IoT, M2M communication, narrowband IoT system, latency, and capacity analysis.

  1. INTRODUCTION

The Internet of Things (IoT) refers to interconnection and exchange of data among devices. To support IoT, Machine-to- machine (M2M) communication is needed. M2M is defined as data communication among devices without the need for human interaction. Examples of IoT services include security, tracking, payment, smart grid, and remote maintenance/monitoring. An estimated 50 billion connected devices will be deployed by 2020 [1].

With the widespread introduction of LTE, low-power wide area IoT connectivity has been introduced for LTE [1][2]. In LTE Rel-12, low-cost devices with material cost comparable to EGPRS devices was introduced [3]. In LTE Rel-13, two new features supporting narrowband machine type communications (MTC) are being introduced. The features are called eMTC (enhanced MTC) and Narrowband IoT (NB-IoT) [5][6]. In eMTC, a new UE with reduced radio frequency (RF) bandwidth of 1.4 MHz in downlink and uplink is introduced. In addition, eMTC also introduces coverage enhancement to provide better indoor support. However, eMTC operates in-band as part of the wideband LTE carrier.

NB-IoT, however, is a new narrowband IoT system built from existing LTE functionalities. It can be deployed in three different operation modes – (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone deployment, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band deployment, it will use one physical resource block (PRB) of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over

GPRS), long device battery life (more than 10 years), and massive capacity (greater than 52K devices per channel per cell). Latency is relaxed although a delay budget of 10 seconds is the target for exception reports.

Since NB-IoT is expected to adopt a design based on existing LTE functionalities, it is possible to reuse the same hardware and also to share spectrum without coexistence issues. In addition, NB-IoT can simply plug into the LTE core network. This allows all network services such as authentication, security, policy, tracking, and charging to be fully supported.

The paper is organized as follows. In Section II, NB-IoT system design is presented. In Section III, performance evaluations for coverage, capacity, latency, and battery life are provided. Finally, conclusions are drawn in Section IV.

  1. NB-IOT SYSTEM DESIGN

In Rel-13, NB-IoT will be introduced for cellular IoT with the following design targets for all deployment operations [4] -

  • Improved indoor coverage: The target is to achieve an extended coverage of 20 dB compared to legacy GPRS devices. This corresponds to achieving target maximum coupling loss (MCL) of 164 dB. At this MCL, data rate of at least 160 bps should be supported at the application layer for both the uplink and downlink.
  • Support of massive number of low-throughput devices: The target is to support at least 52547 devices within a cell- site sector. This target was determined using 40 devices per household with the household density based on the assumption for London provided in [3] (1517 household density per sq. km and cell inter site distance of 1732 m).
  • Reduced complexity: The goal is to provide ultra-low complexity devices to support IoT applications.
  • Improved power efficiency: The target is to provide battery life of ten years with battery capacity of 5 Wh at 164 dB MCL.
  • Latency: Exception report latency of 10 seconds or less is the target for 99% of the devices.

In addition, NB-IoT will support three deployment operation modes as previously described to provide flexibility based on available spectrum and use cases as described below. In stand- alone operation, NB-IoT can be used as a replacement of one or more GSM carriers. This allows efficient re-farming of GSM carriers for IoT.

For in-band operation, one or more PRBs are reserved for NB-IoT. This is shown in Fig. 1 where 1 PRB is reserved. Within this reserved region, NB-IoT signals must not be transmitted in time-frequency resources reserved for LTE (consisting of legacy control region and reference signals). The total eNB power is

全文共19434字,剩余内容已隐藏,支付完成后下载完整资料


Workshop on Device to Device communications for 5G NETWORKS (WD5G 2016)

M2M通信系统

Rapeepat Ratasuk、Benny Vejlgaard、Nitin Mangalvedhe和Amitava Ghosh

诺基亚贝尔实验室移动无线电研究实验室

电子邮件:{rapeepat.ratasuk,benny.vejlgaard,nitin.mangalvedhe,amitava.ghosh}@nokia.com

摘要

在3 GPP中,为了支持物联网,引入了一种基于长期演进(LTE)的窄带系统。这个系统叫做窄带物联网(NB-IoT),它 采用三种不同的工作方式:(1)独立作为专用载波;(2)在宽带lte载波的占用带宽内;(3)在现有lte的保护带内。在独立工作模式下,NB-物联网可以占用一个GSM信道(200 KHz),而对于带内和保护带工作模式,它将使用LTE的一个物理资源块(180 KHz)。Nb-IoT的设计目标包括低成本器件、高覆盖率(比GPRS提高20 dB)、长电池寿命(超过10年)和大容量。虽然延迟预算为10秒是异常报告的目标,但延迟时间被放宽了。Nb-IoT的规格预计将在2016最后确定。本文描述了NB IOT的目标,并给出了初步的系统设计。此外,覆盖率、容量、延迟和电池寿命分析也被提出。

关键词-NB-物联网,M2M通信,窄带物联网系统,延迟和容量分析。

1.介绍

物联网(物联网)是指设备之间的互联和数据交换。为了支持物联网,需要机器对机器(M2M)的通信。M2M定义为 不需要人类互动的设备。物联网服务的例子包括安全、跟踪、支付、智能电网和远程维护/监视。估计有500亿个连接设备 将于2020[1]部署。

随着LTE的广泛引入,已经为LTE引入了低功率广域IoT连接。在LTE REL-12中,采用了与EGPRS器件相当的材料成本低的设备[3]。在LTE Rel-13中,引入了支持窄带机器类型通信(MTC)的两个新特性。这些特征称为eMTC(增强型MTC)和窄带物联网(Nb-IoT)。在eMTC中,介绍了一种在下行链路和上行链路中降低射频(RF)带宽为1.4 MHz的新UE。此外,emtc还引入了覆盖增强功能,以提供更好的室内支持。然而,eMTC只作为宽带LTE载波的一部分在频带内工作.

然而,NB-物联网是一种新的窄带物联网系统,它是从现有的LTE功能中建立起来的.它可以被部署在三种不同的操作模式:(1)作为一个专用的载体而独立使用;(2)在宽带LTE载波占用带宽内使用,以及(3)在现有LTE载波的保护范围内使用。在独立部署中,NB-物联网可以占用一个GSM信道(200 KHz),而对于带内和保护频带部署,它将使用LTE(180 KHz)的一个物理资源块(PRb)。

NB-IoT的设计目标包括低成本设备、高覆盖率(通过GPRS提高20-dB)、设备电池寿命长(10年以上)和大容量(每个CH大于52K个设备)(每个牢房的安奈尔)。虽然延迟预算为10秒是异常报告的目标,但延迟时间被放宽了。

由于NB-物联网将采用基于现有LTE功能的设计,因此可以重用相同的硬件,也可以在不存在共存问题的情况下共享频谱。此外,NB-物联网可以简单地插入LTE核心网。这完全支持所有网络服务,如身份验证、安全、策略、跟踪和计费。

本文件按如下方式进行组织。第二节介绍了NB-IoT系统的设计。在第三节中,提供了覆盖、容量、延迟和电池寿命的性能评价。最后,第四节是结论。

2.NB-IOT系统设计

在rel-13中,将为蜂窝物联网引入NB-物联网,并为所有部署操作提供以下设计目标:[4]-

改进的室内覆盖:目标是实现比传统的GPRS设备提高20分贝的扩展覆盖。这相当于达到目标最大耦合损耗(MCL)164 dB。在这个MCL中,应在应用层支持至少160 bps的数据速率,用于上行链路和下行链路。

支持大量的低功耗设备:目标是在一个小区-站点扇区内支持至少52547个设备。这一目标是根据[3]中为伦敦提供的假设,即每户40台设备和住户密度(每平方公里1517户密度,场间距离1732米)确定的。

降低复杂度:目标是可以让超低复杂度的设备支持物联网应用程序。

提高电源效率:目标是可以让电池寿命提高为10年,电池容量为5 WH,164 dB MCL。

延迟:异常报告等待时间为10s或更少,是99%的目标.

此外,如前面所述,NB-物联网将支持三种部署操作模式,以提供基于可用频谱和用例的灵活性,如下所述。在独立行动中 ,NB-物联网可以作为一个或多个GSM运营商的替代品.这使得GSM运营商能够高效地运行物联网.

对于带内操作,一个或多个PRB保留给NB-物联网.图1显示了这一点,其中保留了1个pRb。在该保留区域内,NB IOT信号不能在为LTE(由遗留控制区和参考信号组成)预留的时频资源中传输。总ENB功率在LTE和Nb-物联网之间共享,并有可能在NB-物联网pRb上提高功率谱密度(PSD)。 在Nb-IoT和LTE之间共享PRB可以更有效地利用频谱,并且随着更多的设备被添加到网络中,Nb-IoT容量将会增加。此外,尽管它们是两个独立的系统,但可以使用相同的ENB硬件来支持它。

Fig. band operation for N

1. In-

B-I

oT.

在保护带工作模式下,NB-物联网将在保护带内的LTE载波中利用新的资源块.图2显示了这方面的一个例子。请注意,这有可能将NB-物联网pRb分配到外部LTE pRb旁边。然而,这将取决于Nb-IoT的通道光栅。此外,由于NB-物联网载波已放置在LTE保护带中,因此可能需要为相邻载波或具有更快滚下速度的滤波器增加保护带。例如,在图2中,由于Nb-IoT载波具有较高的PSD,发射频谱的左侧边缘被左移,所需保护带的左侧边缘也向左移动。目前,这一问题正在研究之中。 图3示出了基于现有信道的NB-物联网系统设计实例。虽然LTE(1.08 MHz)和NB-IoT(180 KHz)的物理广播信道和同步信号的带宽有明显的差异,图中显示Re在每个子帧中的对应信道之间的时间持续时间也有差异。从图中可以注意到的另一个重要特性是窄带物联网上行链路共享信道(NB-PUSCH)通过单音或多音传输,占用LTE系统不到1pb。

10 ms

NB- PBCH

NB- PDCCH

NB-PDSCH

NB- PSS

NB- PSS

NB-PDCCH

DL

180 kHz

10 ms

NB-PUSCH

(12 tones)

NB-PUSCH

(6 tones)

NB-PUSCH

(6 tones)

NB-PRACH

NB-PUSCH (3 tones)

UL

180 kHz

NB-PUSCH, single-tone

图3.NB-IOT物联网设计实例(独立).

表一列出了在NB-物联网中支持的潜在通道和信号.

表一.NB-IOT通道和信号

Channel

DL

Narrowband Physical Downlink Control Channel (NB-PDCCH)

Narrowband Physical Downlink Shared Channel (NB-PDSCH)

Narrowband Physical Broadcast Channel (NB-PBCH)

Narrowband Synchronization Signal (NB- PSS/NB-SSS)

UL

Narrowband Physical Uplink Shared Channel (NB-PUSCH)

Narrowband Physical Random Access Channel (NB-PRACH)

Fig. 2. Gua d-band operation for NB-IOT.

r

sm

基于性能评估,NB-物联网将支持以下数据:

下行链路:具有15-kHz子载波间隔的OFDMA。

上行链路:单音和多音传输.单音传输支持3.75千赫和15千赫的信道.对于多音传输,是基于SC-FDMA的15 kHz子载波间隔.

对于带内部署,如果使用3.75kHz的副载波间隔,将在NB-物联网和LTE之间上行链路中的单音传输产生干扰。然而,这种干扰可以通过在NB-物联网和附近的LTE PRB中调度具有类似信噪比要求的用户来最小化。另一方面,对于15 kHz的子载波间隔,LTE和Nb-IoT子载波之间保持有正交性.

此外,NB-物联网只需要一个混合自动重传请求(HARQ)进程就可以支持半双工操作,并将峰值数据速率降低到100 kbps以上。这将为UE提供显著的成本节约。

请注意,在NB-物联网中没有上行链路控制信道。因此,上行链路确认将在NB-Pusch上传输,而调度请求则必须使用随机访问过程来指示。

3.技术性能分析

本节将介绍性能分析,包括覆盖率、容量、延迟和电池寿命。由于在带内和保护带工作模式下,LTE和Nb-IoT之间的总功率是共享的,因此性能将是相似的。唯一的区别是,保护带操作不需要将ofdm保留给遗留控制区域。因此,只有带内结果才会被显示出来。表二显示了本研究中使用的相关模拟假设。

表二.模拟假设

NB-PDCCH-有效载荷由48位和16位CRC组成,在12个子帧(12 Ms)上传输。

NB-Pusch-有效载荷由776位和24位CRC组成,使用SC-FDMA单音传输传输超过2160个子帧(2160 Ms).采用Turbo编码和QPSK调制。

Nb-PBCH的链路结果如图4所示,用于带内工作模式。在这种情况下,目标信噪比为minus;12.6dB(相当于164-DBMCL)。由于周期性地发送NB-PBCH,UE可以组合多个副本的传输,并且通过捕获时间给出性能。从图中可以看出,minus;12.6dB信噪比收集时间约为1920 ms,每隔10 ms发射一次NB-PBCH。如果参考信号增强,对于大约90%的用户来说,收集时间可以减少到1280毫秒。在这种情况下,参考信号会通过删除等量的数据符号增强。

1

全文共9043字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[12014],资料为PDF文档或Word文档,PDF文档可免费转换为Word

Parameter

Stand-alone

In-band

System bandwidth

200 kHz

10 MHz

Frequency band

900 MHz

eNB transmit power for NB-IoT

43 dBm

35 dBm

MS transmit power

23 dBm

Propagation channel

TU

Doppler spread

1 Hz

Antenna configuration

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。