半挂牵引车车架的强度分析外文翻译资料

 2022-05-23 08:05

Strength Analysis of a Semi-Trailer Tractor Frame

2012-01-0526

Published 04/16/2012

Guoquan Wang and Cheng Zhao

Beijing Information Science amp;Teachnology University

Ping Pan

Beijing Foton Manufacture Corporation

Copyright copy; 2012 SAE International doi:10.4271/2012-01-0526

ABSTRACT

According to the 3 Dimension model of the side member frame, a finite element analysis (FEA) model of semi-trailer tractor frame was established and the approach of applying loads and constraints was discussed. Then the frame stress was analyzed under four working conditions as well as the eigen frequency was calculated too. It was found that the maximum stress appeared on the rear channel side-rail under the bending and twisting condition, however it still meets the strength requirements. Natural vibration frequency is far away from the exciting force#39;s frequency such as the suspension vibration and the engine incentive. The harmonic analysis results shows that the significant stress appeared on the connection part of the channel side - rail and the second cross beam, the balance beam axis, tubular cross member.

Key Words

Harmonic analysis, Excitation frequency, Static strength, Modal

INTRODUCTION

Semi-trailer tractor is one type of commercial vehicles with special mechanism for towing semi-trailer, which is primarily used for long-distance transportation, traveling on high speed or sometimes under overloading condition. In order to satisfy the users#39; requirements, the vehicle#39;s structure is usually conservatively designed so that the total weight is 10%-15% higher than that of world similar products. Researches have shown that with 10% weight reduction could lead to 6%-8% oil consumption and 5%-6% waste production. Therefore there is an urgent need to design light-weight china heavy

truck to improve the fuel efficience and reduce the air pollution[1][2][3]. However, it is hard to satisfy both the structural strength and the light-weight requirement in design process, so the bearing capacity, the structure of vehicle as well as component should be analyzed.

Trailer and semi-trailer are linked by saddle, through which the load transfer to the frame. Frame not only bears the mass of engine, chassis and the goods, but also bears a variety of force and torque emerging in the process of running. Under different driving conditions, additional load can be produced on the frame, for example, wheel skipping steps or wheel passing a pot-hole, or the emergency braking and turning to avoid pedestrian or obstacles. So frame must require enough strength and stiffness to bear various kind of loads. If the frame strength and stiffness fail to meet such requirements, it will lead to cracking damage, driving problem and even serious traffic accident. In addition, the static strength analysis is critical for structural optimization design and improvement of the frame.

Based on a new type of semi-trailer frame structure, this paper built its finite element model, analyzed the bearing capacity of the frame under different working conditions, mastered the stress distribution and dynamic response and gave the resolving of structure optimization process.

Figure 1. Frame structure

  1. ESTABLISH THE FEA MODEL OF THE SEMI-TRAILER FRAME
    1. ESTABLISH THE MODEL

The Semi-trailer frame structure was designed to be side girder trapezoid type as shown in Figure 1. It was rived or bolted by multi-layer steel structure, which has 1392 mm wide in front cross member and 772 mm wide in rear cross beam. Longitudinal beam is a type of section-varying stamping groove beam, with main longitudinal cross-section size of 235/278times;73times;(8 5) mm, lining beam section size of 200/264times;67.5times;5mm. Front cross beam and rear cross beam are groove structure, the second beam V-shaped tube, the balance beam has back-to-back slot type structure as shown in Figure 3. The rest of the middle beams are groove type structure, the wall is 5 mm thick as shown in Figure 2. The longitudinal beam adjacent to the balance axis with reinforcing plate structure and upper surface is the L-type as

shown in Figure 4. The web and bottom wing of cross member and longitudinal beam are riveted together[2]. To increase the front frame installation space, the front frame beam uses the bracket structure as shown in Figure 5.

The CATIA three-dimensional frame model was import into the pre-processing software Hypermesh. It was considered the thickness of crossbeam, longitudinal beam, reinforcing plate and connecting plate are much thinner than the other directions of plates, so extract the mid-surface and use 3- nodes or 4-nodes shell elements to establish the finite element model. The spring bracket of front leaf spring, front shock absorber bracket, engine support, traction saddle and Component with complex structures and bear heavy load, on the other hand these parts have great influence on frame strength, so the tetrahedral or hexahedral elements are used for establishing the finite element model.

Figure 2. The third beam assembly

Figure 3. Balance shaft beam structure

Figure 4. Reinforcing plate of balance shaft

According to the geometric features of steel plate, small size shell elements were chosen and elastic units between every two shell elements were established to make its total stiffness equal to the clamping stiffness of given design so that the leaf-spring model was built. Large number of assembly holes around the longitudinal beam and the transitio

全文共21482字,剩余内容已隐藏,支付完成后下载完整资料


半挂牵引车车架的强度分析

2012-01-0526

2012年4月16日发布

郭国权,程钊
北京信息科学与技术大学

潘平
北京福田制造公司

摘要

本文首先根据牵引车边梁式车架的三位模型,在此基础上建立了半挂车牵引车车架的有限元分析(FEA)模型,并对其载荷和约束进行分析,然后在四种典型工况下分析车架所受到的应力,并计算车架的特征频率。经仿真分析发现,在弯曲和扭转条件下,车架出现最大应力,但此时仍然是满足强度要求的。固有振动频率应远离激振频率,如悬架振动和发动机的激励,谐波分析结果表明,后横梁与第二横梁,平衡梁轴,管状横梁连接部位出现明显的应力。

关键词

谐波分析,激励频率,静态强度,模态

1.简介

半挂牵引车是一种带有特殊半挂车牵引机构的商用车辆,主要用于高速长途运输,甚至有时候会处于超载状态。因而为了满足用户的需求,通常对车辆结构进行比较保守的设计,使其总重量比行业中的同类产品高10%-15%。研究表明,汽车重量减轻10%,石油消耗将会降低6%-8%,废弃物减少5%-6%。因此中国迫切需要设计出重量轻的重型卡车,以提高燃料经济性和减少空气污染[1] [2] [3]。但是,在设计过程中很难同时满足结构强度较高和轻量化要求,因此,需要分析汽车的承载能力,车辆的结构以及零部件的结构。

牵引车和挂车通过鞍座连接,负载通过该鞍座传递至车架。车架不仅承载发动机,底盘和货物的重量,而且承受运行过程中产生的各种力和力矩。在不同的行驶工况下,还会在车架上产生额外的动载荷,例如以下工况:车轮越过台阶、车轮通过地面坑洼处、急刹车和紧急转向以避免行人或障碍物。所以牵引车的车架必须要有足够的强度和刚度来承受各种载荷。如果车架的强度和刚度不能满足上述要求,将导致零件开裂损坏,行驶时出现问题,甚至是严重的交通事故。此外,静态强度分析对于结构优化设计和车架改进起着重要作用。

基于新型半挂车的车架结构参数,建立了有限元模型,分析了不同工况下车架的承载能力,掌握其应力分布和动态响应,为结构优化过程提供了依据。

图1.车架结构

2.建立半挂车车架的有限元模型

2.1建立模型

半挂车车架结构被设计成如图1所示的边梁式梯形结构。它由多层钢结构铆接或螺栓连接而成,其前横梁宽1392 mm,后横梁宽772 mm。纵梁是一种截面可变的冲压槽梁,主纵截面尺寸为235/278times;73times;(8 5)mm,衬梁截面尺寸为200/264times;67.5times;5mm。前横梁和后横梁均为槽型结构,第二根横梁为V型管,平衡梁为背对背槽型结构,如图3所示。其余中梁为槽型结构,如图2所示,其厚度为5毫米。与加强板结构和上表面平衡轴相邻的纵梁是L型,如图4所示。横梁和纵梁的腹板和下翼板铆接在一起[2]。为了增加前车架的安装空间,前车架梁采用了如图5所示的支架结构。

将CATIA三维车架模型导入预处理软件Hypermesh。这里认为横梁、纵梁、加强板和连接板的厚度比板的其他方向薄得多,因此提取中间表面并使用3节点或4节点壳单元建立有限元模型。前钢板弹簧、前减震器支架、发动机支撑、牵引鞍座和复杂结构构件承受重载荷的弹簧支架,另一方面这些零部件对车架强度有很大影响,因此四面体或六面体单元用于建立有限元模型。

图2.第三束组件

图3.平衡轴梁结构

图4.平衡轴加强板

据钢板的几何特征,选择小尺寸的壳单元,建立每两个壳单元之间的弹性单元,使其总刚度等于给定设计的夹紧刚度,从而建立板簧模型。纵梁周围的大量装配孔以及每个附件的过渡圆角对强度和刚度影响不大,但这些部分影响了元件的质量并降低了计算精度,因此这些部件在建模时被简化。车架附件具有复杂的形状以及具有相对经验的结构,应该根据应力的大小对车架进行适当的简化。弹簧支架、背对背梁、牵引鞍和有限元网格的其他部分如图6 a)b)c)所示。

车架组件由纵梁,横梁和板组成,通过铆接和螺栓连接。Hypermesh软件模拟工具用于组装车架[4] [5] [6],如图7所示。

图5.前支架梁

  1. 车架的焊接结构,采用RBE2刚性元件模拟;
  2. 车架采用铆钉和螺栓结构,使用RBE2元件连接孔周围的两层节点,然后将 BAR元件连接到RBE2元件;
  3. 纵梁和内衬梁用GPA单元连接;
  4. 马鞍和鞍垫用GPA单元连接;
  5. 拖钩和前部用GPA单元连接;
  6. 车架是弹簧和弹簧支架的支撑件;蜘蛛孔中心和支架孔用BAR单元连接, 释放围绕轴线的旋转角度。

到此,已将所有部件网格化,设置连接并建立了车架的有限元模型,如图8所示。

2.2 定义零部件材料的属性

表1列出了半挂牵引车车架零部件的材料属性。在Hypermesh中创建材料集(Material Collectors),输入相应的弹性模量、泊松比、材料密度,然后建立材料属性。该软件可以根据横截面形状自动计算体积力。

3.设置边界条件进行静态分析

车架不仅要承载自身的重力,还要承载驾驶室总成、货物、发动机总成、油箱、电池、轮胎,传动轴和其他安装固定在车架上的附件的重量。表2列出了主要附件及其质量。将这些静载荷简化为集中质量,并在每个附件的相应中心位置建立重力集中器[2]。

根据半挂牵引车的行驶特性,检查应力是否分布均匀,静态条件下车架弯曲是否合理;在恶劣的条件下,抗扭能力和车架布局是否合理;横向力的分布对车架和在转弯条件下的车架应力有很大影响; 车架承受惯性力的能力和制动条件下车架应力的分布。因此,必须要建立车架静态强度分析的边界条件。

3.1设定满载弯曲工况的边界条件

满载弯曲模型模拟了四轮都附着的车辆在良好路面上匀速行驶,然后分析重力载荷的响应。由于承载系统具有六个自由度,且系统不是刚性的,所以每个点的位移和加速度不相等。因此,施加载荷时,载荷和重力应该乘以一定的动载荷系数。动态载荷系数主要取决于三个因素:道路条件、车辆行驶条件(如速度)和车辆结构参数(如弹性部件的悬架刚度、轮胎刚度、汽车的重量分布等)。这些因素过于复杂,无法用数学分析来确定结果,因此我们将半经验值与理论研究和实验相结合。

(a)

(b)

(c)

图6 .弹簧支架和车架部件模型

图7.车架组件连接

图8.半挂车车架有限元模型

根据车架和附件的实际运动情况,前后弹簧的Ux、Uy、Uz和ROTz旋转自由度受到限制,而其他自由度在分析时释放。然后抑制Ux、Uy、Uz三个后轮装配节点的平移自由度并释放剩余的自由度,同时施加2.5倍的重力,如图9所示。

表1.车架部件的材料参数

材料等级

零件名称

弹性模量E

泊松比

密度

屈服极限

极限强度

热轧管

第二束

2.01E 05

0.27

7.80E-06

245

410

铸铁600

翻转支架

2.08E 05

0.27

7.80E-06

370

600

铸铁450-10

弹簧支架

2.08E 05

0.27

7.80E-06

310

450

60硅2锰

前悬架

2.10E 05

120

130

55SiMnVB

后轮

0.27

7.80E-06

125

140

悬架

2.10E 05

0.27

7.80E-06

A610L

车架梁与加固板

2.10E 05

0.27

7.80E-06

500

550-610

表2.车架附件质量(单位:kg)

驾驶室

乘员

电池

油箱

发动机

离合器

变速器

车轮

额定质量

最大过载质量

720

198

140

400

780

50

300

120

25000

15505

图9.弯曲工况的边界条件图

3.2充分发挥扭转工况的边界条件

在路面凹凸不平的道路上行驶时,汽车将承受扭转力矩。极限扭转载荷是汽车在不对称支撑下的静态扭矩。为了模拟全扭转状态,两个前轮中的一个升高一定的高度,例如左前轮沿Z方向行进150mm。

满载和扭转条件下的边界条件为:约束Ux、Uy、Uz左右(前)前轮装配节点的三个平移自由度,释放ROTx、ROTy、ROTz三个旋转度的自由度和约束Ux、Uy、Uz三个平移自由度的左(右)后轮装配节点,释放剩余的自由度,并同时施加1g的加速度,如图10所示。

由于惯性载荷较小,汽车的不良行驶条件通常是在低速路况下发生,因此动载系数达到1.5;由于速度较低并且处于静止状态,计算时选择重力加速度为1g。

图10.扭转工况的边界条件图

图11.转弯工况的边界条件图

3.3设置全负载高速转弯的边界条件

车辆不仅承受重力载荷,而且还承受转弯时横向加速引起的侧向力。高速转弯有两种边界条件:

  1. 约束Ux、Uy、Uz三个左前后轮装配节点的平移自由度,并释放ROTx、ROTy、ROTz旋转角度自由。约束Ux、Uz自由度的右前轮装配节点并释放剩余的自由度,然后施加加速度高达2.5g和0.35g的横向加速度。
  2. 边界条件的第二个约束条件与(1)中所述的条件相同,但是发挥了作用1.5g的重力加速度和0.8g的横向加速度,如图11所示。

图12.制动工况的边界条件图

3.4设置全负载制动的边界条件

制动减速时会影响制动并在车架上产生惯性力。惯性力与制动减速的大小和行驶的相反方向成正比。在惯性力作用下,车架的局部应力将会增大,应力最大的部位是车架的交界处。与弯曲条件相同,前后弹簧约束Ux、Uy、Uz平移自由度和ROTx自由度,然后释放剩余的自由度, 施加2.5g的重力加速度和0.35g的水平加速度,如图12所示。

4.半挂车牵引车框架的强度分析结果

4.1静态强度结果<!--

全文共6479字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[11905],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。