数据库管理系统外文翻译资料

 2023-03-07 06:03

Database Management System

You know that a data is a collection of logically related data elements that may be structured in various ways to meet the multiple processing and retrieval needs of organizations and individuals. Therersquo;s nothing new about data base-early ones were chiseled in stone, penned on scrolls, and written on index cards. But now database are commonly recorded on magnetically media, and computer programs are required to perform the necessary storage and retrieval operations.

The system software package that handles the difficult tasks associated with created, accessing, and maintaining database records is in a DBMS package establish an interface between the database itself and the users of the database. (These users may be applications programmers, managers and others with information needs, and various OS programmers.)

A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search. Probe, and query data contents in order to extract answers to nonrecurring and unplanned questions that arenrsquo;t available in regular reports. These questions might initially be vague and/or poorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who arenrsquo;t programmers. In a file-oriented system, users needing special information may communicate their needs to a programmers, who, when time permits, will information. The availability of a DBMS, however, offers users a much faster alternative communications patch (see figure).

Special, direct, and other file processing approaches ate used to organize and structure data in single files. But a DBMS is able to integrate data elements from several files to answer specific user inquiries fir information. This means that the DBMS is able to structure and tie together the logically related data from several large files.

Logical structures. Identifying these logical relationships is a job of the data administrator. A data definition language is used for this purpose. The DBMS may then

Employ one of the following logical structuring techniques during storage access, and retrieval operation: list structures, hierarchical (tree) structures, and network structures, relational structures.

1. List structures. In this logical approach, records are linked together by the use of pointers. A pointer is a data item in one record that identifies the storage location of another logically related record. Records in a customer master file, for example, will contain the name and address of each customer, and an account number identifies each record in this file. During an accounting period, a customer may maintain an invoice file to reflect these transactions. A list structure could be used in this situation to show the unpaid invoices at any given time. Each in the customer file would point to the record location of the first invoice for that customer in the invoice file. This invoice record, in turn would be linked to later invoice for the customer. The last invoice in the chain would be identified by the use of a special character as a pointer.

2. Hierarchical structures. In this logical approach, data units are structured in multiple levels that graphically resemble an “upside down” tree with the root at the top and the branches formed below, therersquo;s a superior-subordinate relationship in a hierarchical structure. Below the single-root data component are subordinate elements (or one) has only a single owner. Thus, as we see in figure, a customer owns an invoice, and the invoice has subordinate items. The branches in a tree structure are not connected.

3. Network structures. Unlike the tree approach, which dose not permit the connection of branches, the network structure permits the connection of the nodes in a multidirectional manner. Thus, each node may have several owners and may, in turn, own any number of other data units. Data, management software permits the extraction of the needed information from such a structure by beginning with any record in a file.

4. Relational structures. A relational structure is made up of many tables. The data are stored in the form of “relations” in these tables. For example, relation tables could be established to link a college course with the instructor of the course, and with the location of the in order to find the name of the instructor and the location of the English class, the course/instructor relation is searched to get the name, and the course/location relation is searched to get the class location. Many other relations are of course, possible. This is a relatively new database structuring approach thatrsquo;s expected to be widely implemented in the future.

5. Physical structure. People visualize or structure data in logical ways for there

Own purposes. Thus, records R1 and R2 may always be logically linked and processed in sequence in one particular application. However, in a computer system itrsquo;s quite possible that these records that are logically contiguous in one application are not physically stored together. Rather, the physical structure of the I/O and storage devices techniques used, but also on the different logical relationships that users may assign to the data found on R1 and R2. For example, R1 and R2 may be records of credit customers who have shipments send to the same block in the same city every two weeks. From the shipping department managerrsquo;s perspective, then, R1 and R2 are sequential entries on a geographically organized shipping report. But may be identified, and their accounts may be processed, according to their account numbers which are widely separated. In short, then the physical location of the stored records in many computer-based information syst

剩余内容已隐藏,支付完成后下载完整资料


Database Management System

You know that a data is a collection of logically related data elements that may be structured in various ways to meet the multiple processing and retrieval needs of organizations and individuals. Therersquo;s nothing new about data base-early ones were chiseled in stone, penned on scrolls, and written on index cards. But now database are commonly recorded on magnetically media, and computer programs are required to perform the necessary storage and retrieval operations.

The system software package that handles the difficult tasks associated with created, accessing, and maintaining database records is in a DBMS package establish an interface between the database itself and the users of the database. (These users may be applications programmers, managers and others with information needs, and various OS programmers.)

A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search. Probe, and query data contents in order to extract answers to nonrecurring and unplanned questions that arenrsquo;t available in regular reports. These questions might initially be vague and/or poorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who arenrsquo;t programmers. In a file-oriented system, users needing special information may communicate their needs to a programmers, who, when time permits, will information. The availability of a DBMS, however, offers users a much faster alternative communications patch (see figure).

Special, direct, and other file processing approaches ate used to organize and structure data in single files. But a DBMS is able to integrate data elements from several files to answer specific user inquiries fir information. This means that the DBMS is able to structure and tie together the logically related data from several large files.

Logical structures. Identifying these logical relationships is a job of the data administrator. A data definition language is used for this purpose. The DBMS may then

Employ one of the following logical structuring techniques during storage access, and retrieval operation: list structures, hierarchical (tree) structures, and network structures, relational structures.

1. List structures. In this logical approach, records are linked together by the use of pointers. A pointer is a data item in one record that identifies the storage location of another logically related record. Records in a customer master file, for example, will contain the name and address of each customer, and an account number identifies each record in this file. During an accounting period, a customer may maintain an invoice file to reflect these transactions. A list structure could be used in this situation to show the unpaid invoices at any given time. Each in the customer file would point to the record location of the first invoice for that customer in the invoice file. This invoice record, in turn would be linked to later invoice for the customer. The last invoice in the chain would be identified by the use of a special character as a pointer.

2. Hierarchical structures. In this logical approach, data units are structured in multiple levels that graphically resemble an “upside down” tree with the root at the top and the branches formed below, therersquo;s a superior-subordinate relationship in a hierarchical structure. Below the single-root data component are subordinate elements (or one) has only a single owner. Thus, as we see in figure, a customer owns an invoice, and the invoice has subordinate items. The branches in a tree structure are not connected.

3. Network structures. Unlike the tree approach, which dose not permit the connection of branches, the network structure permits the connection of the nodes in a multidirectional manner. Thus, each node may have several owners and may, in turn, own any number of other data units. Data, management software permits the extraction of the needed information from such a structure by beginning with any record in a file.

4. Relational structures. A relational structure is made up of many tables. The data are stored in the form of “relations” in these tables. For example, relation tables could be established to link a college course with the instructor of the course, and with the location of the in order to find the name of the instructor and the location of the English class, the course/instructor relation is searched to get the name, and the course/location relation is searched to get the class location. Many other relations are of course, possible. This is a relatively new database structuring approach thatrsquo;s expected to be widely implemented in the future.

5. Physical structure. People visualize or structure data in logical ways for there

Own purposes. Thus, records R1 and R2 may always be logically linked and processed in sequence in one particular application. However, in a computer system itrsquo;s quite possible that these records that are logically contiguous in one application are not physically stored together. Rather, the physical structure of the I/O and storage devices techniques used, but also on the different logical relationships that users may assign to the data found on R1 and R2. For example, R1 and R2 may be records of credit customers who have shipments send to the same block in the same city every two weeks. From the shipping department managerrsquo;s perspective, then, R1 and R2 are sequential entries on a geographically organized shipping report. But may be identified, and their accounts may be processed, according to their account numbers which are widely separated. In short, then the physical location of the stored records in many computer-based information syst

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[498199],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。