升船机与承船厢耦合振动的分析与控制外文翻译资料

 2022-03-14 08:03

Int. J. Civ. Eng. (2016) 14:307–324 DOI 10.1007/s40999-016-0041-2

RESEARCH PAPER

Analysis and Control of the Coupled Vibration Between the Ship Lift and Ship Chamber

Y. Zhong1 bull; J. W. Tu2 bull; G. Que3 bull; B. Tu2 bull; J. Y. Xu2

Received: 12 June 2014 / Revised: 9 June 2015 / Accepted: 16 April 2016 / Published online: 3 June 2016

copy; Iran University of Science and Technology 2016

Abstract Coupled vibrations may occur between ship lift structure and the ship chamber during seismic process due to the ship chamber being hung at the roof of the ship lift. An investigation is carried out to explore the possibility of using different devices to connect the ship lift towers and the ship chamber to prevent the coupled vibrations. A three-dimensional shell finite element model is established, and then simplified into a three-dimensional truss finite element model through dynamic equivalent principle. And the numerical model of coupled vibration analysis is formed through static condensation, calculating the cou- pled vibration response between the ship lift structure and the ship chamber under five connection conditions: no connection, rigid connection, spring, viscous liquid damper and magneto-rheological fluid damper. The result shows that no connection and rigid connection between them are both inadvisable; the magneto-rheological fluid damper provides better vibration damping effect if suitable semi- active control strategy is applied, in comparison with passive control devices.

Keywords Ship lift · Ship chamber · Coupled vibration ·

Viscous liquid damper · Magneto-rheological fluid damper

Introduction

Ship lift is a major navigation structure vertically lifting and lowering ships to hasten their passage across the dam by exploiting mechanical devices. Compared with traditional navigation lock, it adapts to complex terrain and shortens the passage of ships across the dam. Therefore, it has developed rapidly in water conservancy projects in recent years. With huge and complicated load, when mechanical devices work, extremely small structural deformation is demanded [13]. On the other hand, during earthquakes and wind load, the ship lift produces greater vibration response because of its enormous weight. Meanwhile, under dynamic load compli- cated coupled vibrations or even collision occur between the ship lift structure and the ship chamber, severely threatening the ship lift, the chamber and ships. Consequently, it is essential to analyze the coupled vibration during earthquakes and wind and to take appropriate damping measures.

In order to figure out the dynamic characteristic of the ship lift and calculate its dynamic response, it is required to establish the three-dimensional shell finite element model of the structure accurately [48]. The model, however, has numerous freedom degree and the ship chamber is viewed as a concentrated mass, with which calculating the coupled vibration responses between the structure and the ship

chamber is not possible, nor are the different effects pro-

amp; J. W. Tu

tujianwei@whut.edu.cn

1 School of Information Engineering, Wuhan University of Technology, No. 122 Ruoshi Road, Wuhan 430070, China

2 Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, No. 122 Ruoshi Road, Hongshan District, Wuhan 430070, China

3 CCDI Group, No. 19 Keji Mid 2nd Road, Nanshan District, Shenzhen 518000, China

duced by using different connection between them. Thus, the three-dimensional shell model is simplified into the three-dimensional truss model adopting different damping devices to connect the structure and the chamber and analyzing the coupled vibration between them with dif- ferent connections.

At present, few researches have been done to coupled vibration analysis between the ship lift structure and the chamber, and most are confined to analyzing the coupling

308 Int. J. Civ. Eng. (2016) 14:307–324

process among the chamber, the water in chamber, the ship in chamber and steel cables lifting the chamber [9, 10] without considering the coupled vibration between the chamber and the structure. Besides, the study objects of the structural dynamic analysis are chiefly focused on analyz- ing dynamic response of the ship lift structure during earthquakes and wind. The research techniques include the shaking table test of its main structural model, finite ele- ment analysis and theoretical calculation. Chen and Zhao [11, 12] have performed the shaking table test; Ma and Zhang [47] have analyzed its dynamic property and seismic response by establishing its finite element model; Cheng [8] have made analysis and calculation on time- varying dynamic reliability of the ship lift structure under design earthquake intensity through its three-dimensional finite element model; Li [13] have calculated wind-induced response of the ship lift structure with mode superposition method according to random vibration theory. As they propose, the ship chamber is analyzed as a simplified concentrated mass without considering the complicated coupled vibrations in earthquakes and wind. The studies about vibration damping control mainly consist in reducing the seismic whipping effect at the roof machine room of the ship lift [1416]. Few studies have been done to reduce the coupled vibrati

全文共46002字,剩余内容已隐藏,支付完成后下载完整资料


升船机与承船厢耦合振动的分析与控制

Y. Zhong1 bull; J. W. Tu2 bull; G. Que3 bull; B. Tu2 bull; J. Y. Xu2

收到日期:2014年6月12日/修订日期:2015年6月9日/接受日期:2016年4月16日/网上发布:2016年6月3日

copy;伊朗科技大学2016年

摘要

由于船舱悬挂在升船机顶部,因此在地震过程中船舶升降结构与船舱之间可能会发生耦合振动。进行调查以探索使用不同装置连接船舶升降塔和船舱以防止耦合振动的可能性。建立三维壳体有限元模型,然后通过动力等效原理将其简化为三维桁架有限元模型。通过静态凝结形成耦合振动分析的数值模型,计算了在无连接,刚性连接,弹簧,粘性液体阻尼器和磁流变五种连接条件下船舶结构与船舱之间的耦合振动响应流体阻尼器。结果表明,两者之间不存在任何联系和僵化的联系是不明智的;与被动控制装置相比,如果采用适当的半主动控制策略,则磁流变流体阻尼器提供更好的减振效果。

关键词:船舶升降船舱耦合振动;粘性液体阻尼器;磁流变液阻尼器

Abstract

Coupled vibrations may occur between ship lift structure and the ship chamber during seismic process due to the ship chamber being hung at the roof of the ship lift. An investigation is carried out to explore the possibility of using different devices to connect the ship lift towers and the ship chamber to prevent the coupled vibrations. A three-dimensional shell finite element model is established, and then simplified into a three-dimensional truss finite element model through dynamic equivalent principle. And the numerical model of coupled vibration analysis is formed through static condensation, calculating the cou- pled vibration response between the ship lift structure and the ship chamber under five connection conditions: no connection, rigid connection, spring, viscous liquid damper and magneto-rheological fluid damper. The result shows that no connection and rigid connection between them are both inadvisable; the magneto-rheological fluid damper provides better vibration damping effect if suitable semi- active control strategy is applied, in comparison with passive control devices.

Keywords Ship lift · Ship chamber · Coupled vibration ·

Viscous liquid damper · Magneto-rheological fluid damper

引言

船舶升降机是一种主要的航行结构,通过利用机械装置垂直升降船舶以加速其通过大坝。与传统的导航锁相比,它适应复杂的地形,缩短了船只通过大坝的通道。因此近年来水利工程发展迅速。随着巨大和复杂的负载,当机械设备的工作,需要非常小的结构变形[1-3]。另一方面,在地震和风力载荷下,由于其巨大的重量,船舶升降机产生更大的振动响应。同时,在动态载荷作用下,船舶升力结构与船舱之间会发生耦合振动甚至碰撞,严重威胁船舶升降机舱和船舶。因此,分析地震和风力耦合振动并采取适当的减振措施至关重要。

为了计算船舶的动力学特性并计算其动力响应,需要建立结构的三维有限元模型[4-8]。然而,该模型具有许多自由度,并且船舱被视为集中质量,利用该集中质量计算结构和船舱之间的耦合振动响应是不可能的,也不是通过使用它们之间的不同连接产生的不同效果。因此,将三维壳体模型简化为三维桁架模型,采用不同的阻尼装置连接结构和腔体,并分析不同连接处它们之间的耦合振动。

目前关于船舶升力结构与舱室耦合振动分析的研究较少,大部分研究仅局限于分析舱室,舱室内水分,舱室内船舶和提升舱室钢索的耦合过程[而不考虑腔室和结构之间的耦合振动。此外,结构动力分析的研究对象主要集中在分析船舶升力结构在地震和风力作用下的动力响应。研究技术包括其主要结构模型的振动台试验,有限元分析和理论计算。陈和赵[11,12]进行了振动台试验; Ma和Zhang [4-7]通过建立其有限元模型分析了其动力特性和地震反应; Cheng [8]通过三维有限元模型对设计地震烈度下船舶结构的时变动力可靠度进行了分析和计算; Li [13]根据随机振动理论,用模式叠加法计算了船舶升力结构的风振响应。正如他们所提出的那样,船舱被分析为简化集中质量,而不考虑地震和风的复杂耦合振动。有关减振控制的研究主要集中在降低船舶电梯屋顶机房的震波效应[14-16]。为减少船舶升降结构和船舱的耦合振动已经做了很少的研究。

为了解决这个问题,分析和控制了在地震过程中船舶升降机与船舱之间的耦合振动,以及三峡大坝升船机的工程背景。 建立其三维壳体有限元模型,并将其简化为三维桁架模型,充分考虑舱室与结构的耦合作用。 基于桁架有限元模型,通过静力凝结建立其数值模型,通过数值计算得到结构与舱室不同连接处的地震响应。

船舶升力的三维壳体有限元模型

船舶升降机的主要结构由底塔,船舱和屋顶机房组成。塔架支撑结构和舱室的所有重力荷载。这个房间里有船只,通过绞车在屋顶机房拉动的钢索吊起和放下它们。该塔由四个对称分布在该室两侧的管组成。两边的管子长119米,宽16米,与剪力墙和梁连接。两侧的管通过屋顶机房和观察平台与梁连接。船舱长132米,宽23米,高10米。重达16000吨,内部装有船舶和水。最大起升高度达113米。滑轨安装在塔架上,用于振荡腔室。在地震过程中,塔架与舱室之间会发生剧烈的耦合振动,甚​​至发生最严重的碰撞,从而威胁船舶的升力和舱室。塔的顶部设有一个机房,以容纳起重设备。其主要结构的7-13轴布局如图2-1所示。

利用ANSYS软件建立三维壳体模型,其中起重设备,滑轮组,台阶,平台载荷等附件均转化为集中质量,压在船上的相应位置电梯。管壳和剪力墙采用Shell63单元模拟,耦合梁采用Beam4单元模拟,集中质量采用Mass21单元模拟。模型中钢筋混凝土的单位重量设置为25 kN / m,泊松比为0.20。

考虑到底部和顶部混凝土类型的差异,低于32.5 m的材料的弹性模量设置为27,980 MPa,高于32.5 m的材料的弹性模量为26,700 MPa。根据真实结构获得模型不同元素的形式和大小。其主要结构的三维壳模型如图2-2所示。

为研究升船机的动力学特性,采用Lanczos方法进行模态分析。表2-1列出了前两种横向和纵向振动模式的固有振动频率和周期。第一个固有振动频率为0.34 Hz,属于高层结构,具有更大的灵活性。图3和4分别显示其横向和纵向振动模式。由于三维壳体有限元模型存在真实结构的优化模拟,因此模型的固有振动频率和模态能够准确反映真实结构的动力特性。

图2-1 1/4主结构的布局的7-13轴

图2-2 主要结构的三维壳体模型

图2-3 壳模型的横向一阶振动模式

表2-1 三维壳体有限元模型的动力学特性

三维壳体模型

频率/Hz

周期/s

模式形式

0.34

2.94

第一阶段横向振动

0.89

1.12

第一阶段纵向振动

1.97

0.51

第二阶段横向振动

3.39

0.30

第二阶段纵向振动

三维壳体模型的简化

船舶升力三维有限元模型能够准确反映真实结构的动力特性。然而,由于以下原因,壳模型必须被简化:(1)其自由度高达92382,这使得后续的阻尼计算变得不可能; (2)造型时,船舱以集中质量的形式压在船舶升降机上,无法反映舱室的动态特性; (3)壳体模型的结构太复杂,无法确定舱室与结构之间的连接,无法计算舱室与船舶升降机之间的耦合振动,而且考虑到不同连接装置对耦合的影响振动。为了解决这些问题,采用了从三维壳体有限元模型到三维桁架有限元模型到静态冷凝的两步简化过程,建立了船舶升力和结构动力学的简化数值模型用于在每个步骤中比较特性。

3.1三维桁架有限元模型

在从壳模型到桁架模型的简化方法中,壳模型中的管,剪力墙和梁被简化为分立的单独构件。然后根据实际结构中的连接形式确定这些成员之间的连接。为了保证模型简化的精度,桁架模型中所有构件的惯性矩和横截面质量中心与壳模型中的一致。在管子和剪力墙简化为垂直构件之后,水平梁和垂直构件通过增加刚性杆连接。平衡重,机械设备,滑轮组和梯子等附加物仍然以集中质量的形式压在主结构上。对于桁架模型和壳模型之间的动力等效,调整桁架模型中刚性梁的刚度尤为重要。通过比较调整,当刚性杆的弹性模量和剪切模量大于桁架构件的两个数量级时,桁架模型的动态特性与壳体模型的动态特性最接近。

图3-1 壳模型的纵向一阶振动模式

在简化过程中,考虑船舱的建模以及舱室与船舶升降结构之间的连接也很重要。船舱通过电缆悬挂在屋顶机房内的滑轮组上,在9.3至122.3米的高度范围内升降。室和结构之间的真实连接如图3-2所示。

室通过四个横向导向装置水平连接到塔。船上的导轨安装如图3-3所示。此时舱室的高度为122.3米。在建模过程中,塔和室都被简化为构件形式。船舱由边缘成员和支持成员组成。纵向导向装置简化为通过链杆与船舱连接的弯曲梁。横向导向装置简化为与船舶升降结构的舱室和塔架连接的横向连接装置。横向连接装置可以是弹簧或其他阻尼器。在建模中,连接装置由刚度设置为100 MN / m的弹簧元件模拟。

由于在三维壳模型中,船舱以集中质量的形式被压在船升力结构上,而不考虑舱的动力特性,只有桁架模型的主结构和壳模型的振动模式可以比较。比较结果如表2所示。可以看出,振动模式大致相等。简化的桁架模型很好地反映了真实结构的动力学特性,可以通过模型分析舱室与船舶升力结构之间的耦合振动。图3-4,3-5,3-6,3-7显示了桁架模型的前四种振动模式,其中第一阶段是结构的横向振动,第二阶段和第三阶段是船舱的局部扭转和横向振动,以及第四是结构的纵向振动。

3.2三维桁架模型的静态冷凝

从三维桁架有限元模型中提取集中质量矩阵和相应的刚度矩阵。 提取的矩阵包含270个关节,每个关节包含6个自由度以及10个关节约束条件,从而得到完整的质量矩阵和船舶电梯的刚度矩阵均为1560。

第n个固有振动频率; nm和nn对应于第m固有振动频率和第n固有振动频率的阻尼比。 船舶升力由混凝土制成,n设为常数0.05,质量阻尼系数a和刚度阻尼系数b分别为0.1625和0.0121。

图3-2 舱室和升船机结构之间的连接

图3-3 船舶升降机的三维桁架有限元模型

表3-1 两者之间动态特性的比较壳模型和桁架模型

3D外壳模型

3D桁架模型

模式形式

频率/Hz

周期/s

频率/Hz

周期/s

0.34

2.94

0.35

2.86

第一阶段横向振动

0.89

1.12

0.96

lt;

全文共9603字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[16255],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。