Al-Cu-Nacl块体合金双模纳米多孔铜及其对甲基橙的高效降解外文翻译资料

 2022-11-17 05:11

Dual-Mode Nanoporous Copper by Dealloying Al-Cu-Nacl Bulk Alloys and Its High Degradation Efficiency Toward Methyl Orange

1.—School of Materials Science and Engineering, University of Jinan, No. 336, West Nan Xinzhaung Road, Jinan 250022, Peoplersquo;s Republic of China. 2.—School of Materials Science and Engineering, Shanghai University, No. 149, Yanchang Road, Shanghai 200070, Peoplersquo;s Republic of China. 3.—Materials and Marine Research Center, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany. 4.—e-mail:mse_zhaodg@ujn.edu.cn

In this work, a facile synthesis route was applied to fabricate nanoporous copper (NPC). As-sintered AlCu bulk alloys with (or without) NaCl that were fabricated by powder metallurgy were taken as precursors during the preparation of NPC via chemical dealloying. The effects of NaCl in the alloys on precursors and products were investigated. Scanning electron microscope (SEM) examinations showed that the addition of NaCl is really beneficial to the formation of a dual-mode pore structure. The x-ray diffraction (XRD) revealed that the AlCu phase formed at the powder metallurgy stage could be completely corroded in HCl solution in the as-dealloyed products, whereas it remains unchanged in the NaOH condition. SEM images showed that NPC was characterized by a three-dimensional, bicontinuous, uniform, or dual- mode ligament-channel structure with nanoscale length. There were no obvious AlCu blocks or other bulks in the NPC sample fabricated from Al67Cu33 alloys with NaCl. In addition, it exhibited hierarchical structures with two distinctive pore sizes, which results in the best photocatalytic properties of NPC. Moreover, the photocatalytic properties of NPC for methyl orange (MO) degradation in water solution were evaluated, and it miraculously showed enhanced photocatalytic performance of exceeding 99% at even a brief time.

INTRODUCTION

As a result of the satisfactory performances like surface effect, small size effect, quantum size effect, and macroscopic tunnel effect,1–3the nanoporous metals have very broad application prospects in a host of areas, including catalysis, sensors, filtration, biomedicine, surface-enhanced Raman scattering, and water treatment.So far, some nanoporous metals, such as NPG (nanoporous gold),8 nP-Pt (nanoporous platinum),9,10 nP-Pd(nanoporous pal- ladium),11,12 and NPC (nanoporous copper),313,14 have been triumphantly fabricated with various precursors through a dealloying method. Compared with expensive NPG, nP-Pt, and nP-Pd, which have become shared as a result of their perfect catalytic activity, cheaper NPC that also works well in catalysis area is more suitable for mass production.

In most researchersrsquo; work17–20 on preparing nanoporous metals, the precursors used are usually ribbons with a thickness of nearly 20–50 lm, which could save the corrosion time and is beneficial to the formation of a nanoporous structure as a result of the fine grain size of the precursor. In general, researchers would rotate the high-temperature melt to a single-roller melt spinning device.21 At the same time, the preparation techniques (single-roller spinning22 and mold casting23) they used were both assiduous and a high cost. Therefore, it is difficult to prepare ribbons on a large scale, which limits the industrial application of nanoporous metals.

MATERIALS AND METHODS

Precursors in this work were made by the powder metallurgy method, which was divided into three processes, including powders-mixing, cold-pressing, and sintering. According to the phase diagram,24 Al67Cu33 (at.%) corresponding to the single Al2Cu phase was chosen as the representational object. Concretely, raw Al and Cu powders (purity,gt;99.8 wt%, 75 lm) with a nominal composition of 67:33 were first mixed sufficiently and grinded until their granularity was about 1 lm. Then, as- received NaCl (20 wt.% of Al-Cu powders) with a particle size of 250 lm (60 meshes) and milled NaCl with a particle size of 70 lm (200 meshes) were, respectively, added into mixed Al-Cu powders followed by further grinding (see Table I).

Third, the well-mixed powders were cold-pressed in a stainless steel die at 500-MPa pressure for 2 min at room temperature. Then the green com- pacts with thicknesses of about 2 mm and diameters of about 22 mm were prepared. Thereafter, the green compacts were continuously sintered in a pipe still under a flowing argon atmosphere at 500°C for 30 min to acquire the prospective precursors.25 Before conducting the dealloying experiments part, the as-sintered bulk alloys were desalinized at 90°C for 3 h in a water bath to dissolve NaCl. The desalinized precursors were then separately dealloyed in 10 wt.% NaOH or 5 wt.% HCl aqueous solutions under the conditions of free corrosion at room temperature. The dealloying process was carried out until visible bubbles did not appear any longer and the solutions were clear again (about 10–50 h). The residues were removed from beakers and thoroughly rinsed with distilled water at least three times to wipe off the residual NaOH or HCl. The detailed experimental conditions and phase compositions of samples are shown in Table I.

Nitrogen adsorption–desorption at 70 K with a surface area and pore radius distribution apparatus (Quantachrome NOVA, America) was employed to evaluate the specific surface area of Brunauer- Emmett-Teller (BET) and porous structure. The pore size distribution and the desorption branch of the isotherms were calculated with a Barrett– Joyner–Halenda (BJH) method.

The catalytic properties of the as-dealloyed products were me

剩余内容已隐藏,支付完成后下载完整资料


Al-Cu-Nacl块体合金双模纳米多孔铜及其对甲基橙的高效降解

1.济南大学材料科学与工程学院,济南250022,济南250022,济南大学新南路西段336号。 2.上海大学材料科学与工程学院,上海市延长路149号,200070,中华人民共和国。 3.材料与海洋研究中心,德国Geesthacht的Helmholtz-Zentrum Geesthacht。4.电子邮件:mse_zhaodg@ujn.edu.cn

在这项工作中,一条简单的合成路线被应用于制造纳米多孔铜(NPC)。通过粉末冶金法制备的含有(或不含)NaCl的烧结AlCu块体合金在通过化学合金化制备NPC时被视为前体。研究了NaCl在合金中对前体和产物的影响。扫描电子显微镜(SEM)检查显示,加入NaCl对双模孔结构的形成确实有益。 X射线衍射(XRD)表明,在粉末冶金阶段形成的AlCu相可以在HCl溶液中完全腐蚀,而在NaOH条件下则保持不变。 SEM图像显示NPC具有纳米级长度的三维,双连续,均匀或双模式韧带 - 通道结构。在用Al67Cu33合金与NaCl制造的NPC样品中没有明显的AlCu块或其他块体。此外,它展示了具有两种独特孔径的分层结构,从而导致NPC的最佳光催化性能。此外,NPC评估了水溶液中甲基橙(MO)降解的光催化性能,并且即使在短时间内它也奇迹般地表现出超过99%的光催化性能。

前言

由于表面效应,小尺寸效应,量子尺寸效应和宏观隧道效应等令人满意的性能,纳米多孔金属在催化,传感器,过滤,生物医学,表面等领域具有非常广阔的应用前景(纳米多孔金),8 nP-Pt(纳米多孔铂),9,10 nP-Pd(纳米多孔钯),11,12和NPC(纳米多孔铜)313,14通过脱金属方法被各种前体胜利地制造出来。与昂贵的NPG,nP-Pt和nP-Pd相比,它们具有完美的催化活性,因此它们在催化领域具有良好的作用,更便宜的NPC更适合大规模生产。

在大多数研究人员关于制备纳米多孔金属的工作中,所使用的前体通常是厚度接近20-50mu;m的带状物,这可以节省腐蚀时间并且由于精细结构而有利于形成纳米多孔结构前体的粒度。一般来说,研究人员会将高温熔体旋转到单辊熔融纺丝设备上.21同时,他们使用的制备技术(单辊旋转22和模具铸造23)既苦苦又成本高。因此,大规模制备带状物是困难的,这限制了纳米多孔金属的工业应用。

材料和方法

本工作中的前驱体采用粉末冶金法制造,分为粉末混合,冷压和烧结三种工艺。根据相图,选择对应于单个Al2Cu相的24 Al67Cu33(at。%)作为表征对象。具体地说,首先将标称组成为67:33的未加工的Al和Cu粉末(纯度gt; 99.8wt%,75lm)充分混合并研磨直到它们的粒度为约11mu;m。然后,将粒径为250mu;m(60目)的原始NaCl(20重量%的Al-Cu粉末)和粒径为70mu;m(200目)的研磨过的NaCl分别加入混合的Al -Cu粉末,随后进一步研磨(参见表I)。

第三,在室温下在500MPa压力下在不锈钢模具中将充分混合的粉末冷压2分钟。然后准备厚度约2毫米,直径约22毫米的绿色组合物。此后,生坯在还处于流动的氩气氛下的管中在500℃下连续烧结30分钟以获得预期的前体。在进行脱金属实验部分之前,将烧结后的块状合金在90℃下脱盐在水浴中溶解3小时以溶解NaCl。然后将脱盐的前体在室温下自由腐蚀的条件下分别在10重量%的NaOH或5重量%的HCl水溶液中脱钴。脱金属过程一直进行到可见气泡不再出现,并且溶液再次澄清(约10-50小时)。将残余物从烧杯中取出并用蒸馏水彻底漂洗至少三次以擦去残留的NaOH或HCl。表1列出了样品的详细实验条件和相组成。采用表面积和孔隙半径分布装置(Quantachrome NOVA,美国)在70K下的氮气吸附 - 解吸来评估Brunauer-Emmett-Teller(BET)的比表面积和多孔结构。用Barrett-Joyner-Halenda(BJH)方法计算等温线的孔尺寸分布和解吸分支。

通过使用具有40kHz频率和100W室外输出功率的超声波发生器的光催化降解实验来测量作为合金化产物的催化性能。催化剂的最佳含量是通过加入不同量(0克L-1,0.2克L-1,0.4克L-1,0.6克L-1,0.8克L-1和1.0克L -1)的样品1-5加入到质量分数为15 mg L-1的50 mL MO溶液中。手术前,将所有溶液置于黑暗环境中30分钟以达到吸收平衡。在超声波照射过程中,取出5mL浑浊溶液并立即每10分钟离心以确保获得清澈的上清液。 MO溶液的吸光度用可见分光光度计(722型,中国)监测,最大吸收波长为464nm的MO溶液。按照方程式计算降解效率。 1:g = C0 - C = A0 - Atimes;100%(1)其中A0和C0分别是最大吸收波长464nm处的甲基橙的原始吸光度和浓度; A和C分别是瞬时吸光度和浓度。对每个样品进行至少三次实验以确保合理的再现性,然后对测量结果进行平均并报告。

使用具有在40kV和40mA的Cu-Ka(k = 0.154056nm)辐射的Bruker D8高级x射线衍射仪(XRD)来鉴别通过合金化Al-Cu-Nacl块状合金及其其合金的相的双模式纳米多孔铜对Al67Cu33合金和合金样品中存在的甲基橙具有高的降解效率。使用FEI Quanta Feg 250扫描电子显微镜(SEM)与能量色散X射线光谱(EDS)耦合来分析所有样品的微观结构。

结果与讨论

图1展示了Al67Cu33合金在溶解之前(和之后)以及脱矿后的(和不含)NaCl的XRD图谱。如图1a所示,当合金不含NaCl(样品4和5)时,只能检测到Al2Cu和AlCu相。在含NaCl合金(样品1-3)的情况下,不仅检测到Al2Cu和AlCu相,而且还检测到NaCl相,表明NaCl成功添加到合金中。在对含NaCl的合金(样品1-3)进行脱盐处理后,没有检测到NaCl峰(如图1b所示),表明在应用条件下完全脱盐。从图1a(样品4和5)和图1b中,值得注意的是,脱盐样品与样品4和5的前体具有相似的XRD特征,样品4和5不含NaCl,不需要脱盐。也就是说,前体中只能找到Al2Cu和AlCu相。尽管如此,AlCu(如图1b所示)在15°和30°之间的2h达到峰值,脱盐后几乎看不到。这一现象可能归因于脱盐过程中沿高指数表面的优先生长.26众所周知,处理是一种熟悉的腐蚀过程,在此过程中,合金通过选择性溶解最具电化学活性的要素。这一过程导致形成纳米多孔海绵,其几乎完全由贵金属合金成分组成。[27]换言之,对于Al-Cu合金,Al元素将被选择性腐蚀,并且Cu元素将扩散形成纳米多孔结构理论上。尽管如此,AlCu阶段依然存在于合作样本1,2和4中,如图1c所示。这可能是由于在NaOH溶液中部分合金化了Al2Cu和AlCu双相合金,最终形成了独特的NPC / AlCu复合材料[28]。在碱性溶液中浸泡后,形成Cu2O相(如样品1-4)与我们先前的报告一致.29总之,AlCu相可能会留在碱性溶液中,而在酸性溶液中完全腐蚀。此外,CuO(如样品1-4)和CuO(样品4)的相可以在合金产品中检测到。这可能归因于在空气中碱性或酸性溶液中形成Al-Cu前体的表面氧化

图2显示了通过将不同Al67Cu33块状物分别浸入10wt%NaOH(或5wt。%HCl)溶液中(并且不含20wt。%NaCl)得到的非合金化样品1-5的微观结构的SEM图像。可以观察到,通过在NaOH溶液中使用Al67Cu33块体与NaCl混合制备的产物具有开放的,双连续的海绵样形态的特征,韧带尺寸大约为40-80nm,孔径大小约为Al67Cu33块体,没有NaCl由50纳米的纳米结构颗粒组成(如图2a和b所示)。尽管如此,通过合成各种尺寸从60到80 nm制备的样品(如图2d和e所示)。显然,在不同大小尺度上结合孔隙度的等级结构由两种约40nm的孔径组成,并且在通过浸渍Al67Cu33块体获得的合金化产品中可以发现1lm(图2c和c1)与氯化铝双模式纳米多孔铜合金Al-Cu-Nacl合金及其对5wt。%HCl溶液中甲基橙的高降解效率。显然,这些柱子由与图2a中的简单韧带结构不同的铜颗粒组成。在双模式结构中,较高水平的孔提供物质运输,而较低水平的孔提供化学反应的位置。由于这个原因,催化性能可以大大提高。

代表三种不同结构的合成产品(样品1,3和4)的氮吸收 - 解吸等温线如图3所示。产物的Brunauer-Emmett-Teller(BET)比表面积其结构是开放的,双连续的,海绵状的形态;双模式结构;并且纳米级颗粒分别为约25.0m 2 g-1,15.8m 2 g-1和17.5m 2 g -1。如图3a-c的插图所示,通过采用Barrett-Joyner-Halenda(BJH)方法计算等温线的孔尺寸分布和解吸分支,平均孔径约为4.1nm,2.8 nm和2.6nm。

通过对合金样品1-5的光催化性能,确定最佳的去合金参数组。由于双模式纳米多孔结构的存在,选择样品3作为示例以推荐最佳催化含量。为了推荐最佳的催化剂含量,将0g L -1,0.2g L -1,0.4g L -1,0.6g L -1,0.8g L -1和1.0g L -1(浓度的催化剂)绘制成图,如图4a所示。没有催化剂,MO溶液在不同时间的降解效率仅保持在约15%。随着催化剂的增加,催化剂的效率在一开始就显着增加,直到催化剂浓度达到0.8 g L-1。这可以归因于过多的催化剂可以提供更多的吸附位置,但是过多的催化剂可能阻止声音的扩散并且最终导致降解效率的降低.31当催化剂浓度为0.8g L-1时,效率在10分钟内达到90%以上。显然,当催化剂浓度为0.6 g L-1或0.8 g L-1时,最大效率可能在20分钟内接近100%。此外,在20分钟时间内,效率几乎可以维持在60分钟(99.8%),表明其稳定性非常显着。根据该实验结果,催化剂的最佳催化剂含量为0.8g L-1。因此,研究其他浓度为0.8 g L-1的样品,尽管其比表面积很小(仅15.8 m2 g-1),但样品3的降解效率始终在所有样品中最高。从图3a和b可以看出,平均孔径和比表面样品差异很大。这可能是由于较低水平的孔隙有利于增加更多的接触位置,而较高水平的孔隙有利于材料传输。这是增强催化活性的等级结构的协同效应。为了判断加入NaCl产生的效果,进行了样品2和样品4的对比实验。根据图4b可知,样品2的MO的光催化性能略高于样品4的光催化性能。因此,可以表明添加NaCl有助于提高降解效率。通过对比样品1和样品2,可以证明当NaCl的粒度较低(样品2)时,降解效率会更高。同时,与样品2和样品3相比,可以证明5%(重量)HCl的腐蚀溶液有利于提高MO的光催化性能。

结论

纳米多孔铜具有开放的,双连续的形态,具有结合明显不同尺寸尺寸的孔隙的分层结构,可以通过在HCl水溶液中使用自由腐蚀工艺将AlCu块状合金与NaCl合金化来直接制造。降解效率结果表明,NPC具有较高的光催化性能,包括活性高,稳定性好。这个结果表明在这项研究中NPC样品可能用于去除水污染物。不仅在短时间内NPC的降解效率很高,而且在这项工作中前体合金的制备过程比那些设备要求和实验要求严格的合金带要容易得多。评估了合金样品的光催化性能,并确定了一系列合适的参数:NaCl的添加量,70微米(NaCl)的粒度和5重量%的HCl腐蚀溶液。双模式结构可以使用前面提到的参数来获得。而且,这种简单和绿色的策略使其适用于大规模合成和工业应用有利可图。

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[24593],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。